已知f(x)=sinx,f[a(x)]=1-x2,求a(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:52:47
f(x)=a*b=(cosx+sinx)*(cosx-sinx)+sinx*(-2cosx)=(cosx)^2-(sinx)^2-2sinx*cosx=cos2x-sin2x=根号2*(根号2*cos
1)f(x)=a·b=-2sin^x+2√3sinxcosx=cos2x-1+√3sin2x=2sin(2x+π/6)-1,它的增区间由(2k-1/2)π
f(x)=ab=2sin^2x+2sinxcosx=(1-cos2x)+sin2x=根号2*sin(2x-Pi/4)+1又-1
f(x)=2sinx(sinX+cosX)=2sinxsinx+2sinxcosx=1-cos2x+sin2x=√2sin(2x-π/4)+1所以f(x)的最小正周期=2π/2=π最大值=1+√2
(1)f(x)=a*b+1=2sin²x+2sinxcosx+1=1-cos2x+sin2x+1=√2sin(2x-π/4)+2所以函数f(x)的最小正周期是T=2π/2=π(2)x∈[0,
f(x)=a*b=2sinxcosx+(sinx+cosx)(cosx-sinx)=sin2x+cos2x=√2sin(2x+π/4)1)当x∈[0,π/2]时2x+π/4∈[π/4,π/4+π]当2
f(x)=sinx+5x,x∈(-1,1)∵f(-x)=sin(-x)-5x=-(sinx+5x)∴f(x)是奇函数f'(x)=cosx+5∴f'(x)恒>0∴f(x)是增函数f(1-a)+f(1-a
f(x)=ab=2sinx(1+sinx)+(cosx+sinx)(cosx-sinx)=2sinx+2sin^2x+cos^2x-sin^2x=2sinx+sin^2x+cos^2x=2sinx+1
函数f(x)=(sinx一cosx)sin2x/sinxsinx≠0,所以x≠kπ,k∈Z.函数定义域是{x|x≠kπ,k∈Z}.f(x)=(sinx一cosx)sin2x/sinx=(sinx一co
1、f(x)=2√3sinx+2cosx=4sin(x+π/6)f(x)的最大值为4,此时x∈{x|x=π/3+2kπ,k∈Z}.2、由f(x)=2bc-bc=bc所以bc
字数限制f(x)=cos2x+(1-cos2x)/2+sin2x/2=(cos2x+sin2x)/2+1/2=cos(2x+π/4)/根号2+1/2其最小正周期为π,最大值为:(1+根号2)/2x在[
f(x)=(1-sinx+cosx)/(1-sinx-cosx)+(1-sinx-cosx)/(1-sinx+cosx)=[(1-sinx+cosx)^2+(1-sinx-cosx)^2]/(1-si
ab=(cosx+sinx)^2-2sin^2x=sin2x+1-2sin^2x=sin2x+cos2x=√2sin(x+π/4)∴f(x)=√2sin(x+π/4)+1T=2π/1=2π(Ⅱ)∵x∈
f(x)=a·b=(cosx+sinx)²-2sin²x=cos²x+sin²x+2sinxcosx-2sin²x=1-2sin²x+2si
解析:∵a*b=(cosx+sinx,sinx)*(cosx-sinx,2cosx)=(cosx+sinx)(cosx-sinx)+2sinxcosx=[(cosx)^2-(sinx)^2]+2sin
f(x)=x*sinxf'(x)=sinx+xcosx,x∈(0,π/2)时,f'(x)>0,f(x)递增f(-x)=f(x),f(x)是偶函数∵A,B是锐角三角形两个内角∴cosA=sin(π/2-
f(x)=2sinx(sinx+cosx) =2sin²x+2sinxcosx =2sin²x-1+2sinxcosx+1&
(1)因为f(x)=0,即a=sin2x−sinx=(sinx−12)2−14,a的最大值等于(−1−12)2 −14=2,a的最小值等于-14,所以,a∈[−14,2].(2)f(x)=-
f(x)=1-2x^2
(1)当sinX=-(2a/-2)=a时,f(x)最大,故g(a)=a^2+a-1