已知f(x)=xlnx,g(x)x^3 ax^2-x 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:56:14
对f(x)求导,导数为lnx+1,当导数大于0,即x小于1/e单调递增,当导数为0,即x=1/e,有极大值-1/e,当导数小于0,即x小于1/e,单调递减.
f'(x)=(xlnx)'=lnx+1当1≤x≤3时lnx+1>0,即f(x),单调增加所以f(x)在[1,3]上的最小值为f(1)=0要使g(x)=-x^2+2ax-3在[1,3]上单调增加因为它的
(1)当a=0时,f(x)=x-xlnx,函数定义域为(0,+∞).f'(x)=-lnx,由-lnx=0,得x=1.-------------(3分)x∈(0,1)时,f'(x)>0,f(x)在(0,
你的表达不是很清楚,我按我的理解帮你做一下!f(x)=xlnxg(x)=f(x)+ln(1+x)-x=xlnx+ln(1+x)-xg'(x)=lnx+1+1/(x+1)-1=lnx+1/(x+1)g'
设h(x)=f(x)-g(x)=xlnx-2x+3(定义域x>0)求导h'(x)=lnx+1-2=lnx-1令h'(x)=0得x=e,又二阶导数h''(x)=1/x>0即h(e)为最小值,h(x)>=
2)恒成立就是g(x)的最大值,小于f(x)的最小值,对G(x)求导函数,判定极大值时是a的关系式,这个小于f(x)的最小值.3)还是求导函数,假设F(X)=前面的式子,求导函数后,利用坐标系,判定图
(1)f'(x)=lnx+1,令其等于0,得x=1/e,所以f(x)减区间(0,1/e),增区间(1/e,无穷),当t∈(0,1/e]时,最小值为f(1/e)=-1/e,当t∈(1/e,无穷)时,最小
已知函数f(x)=xlnx1、若函数G(x)=f(x)+x^2+ax+2有零点,求实数a的最大值2、若任取x大于0,f(x)/x小于等于x-kx^2-1恒成立,求实数k的取值范围(1)解析:∵函数f(
(Ⅰ)f(x)的定义域为(0,+∞),f(x)的导数f'(x)=1+lnx.令f'(x)>0,解得x>1e;令f'(x)<0,解得0<x<1e.从而f(x)在(0,1e)单调递减,在(1e,+∞)单调
(Ⅰ)∵f(x)=xlnx,∴f′(x)=1+lnx,x>0,由f′(x)=1+lnx<0,可得0<x<1e,f′(x)=1+lnx>0,可得x>1e,∴函数f(x)的减区间为(0,1e),增区间为(
f`(x)=lnx+1
(1)f'(x)=lnx+1可得lnx+1=0x=1/e此时f(x)最小f(x)=-1/e(2)对x>0可将不等式转化为2lnx+x+3/x≥a恒成立,所以要求出h(x)=2lnx+x+3/x的最小值
f(x)=xlnxg(x)=x^3+2ax^2+2当x>0,2f(x)0,g(x)+2-2f(x)>=0令F(x)=g(x)+2-2f(x)=x^3+2ax^2+4-2xlnx,其中F(0)=0F'(
2f(x)≥g(x),x∈(0,+∞),即2xlnx≥-x²+ax+x-3,ax≤2x·lnx+x²-x+3,a≤2lnx+x-1+3/x,x∈(0,+∞),令h(x)=2lnx+
g'(x)=3x²+2ax-1不等式2f(x)≤g'(x)+2即2xlnx≤3x²+2ax+1解集为P∵(0,+无穷)是P的子集∴x>0时,2xlnx≤3x²+2ax+1
对不起啊,老师说导数我没学,不可能一下做出这道题...老师说记h(x)=lnx-1/e^x+2/ex用导数的方法求单调性,求出最小值大于0就可以了.我开始以为是高一的函数题,想用换元做,走不出去..唉
求导,g’(x)=3x2+2ax-1g’(1)=2+2a=0(因为单调区间为(-1/3,1),故-1/3、1都为导函数0点)a=-1所以g(x)=x3-x2-x+2斜率k=g’(1)=0,切线方程为,
f(x)对x求导得df(x)/dx=lnx+1df(x)/dx>0有x>e分之1,原函数在这个区间单增df(x)/dx
/>(1)对函数f(x)=xlnx求导得:f'(x)=lnx+1令lnx+1=0,x=1/e当x>1/e时,f'(x)>0当01时,g'(x)>0,即g(x)在x≥1时单调递增,最小值为g(1)=1所
g(x)=xlnx-x²f(x)=xlnx-a(x-1),g‘(x)=lnx+1-a.当a≥2时,在[1,e]上恒有g‘(x)≤0,所以g(x)在区间[1,e]上单调递减,最小值为g(e)=