已知f(x)的间断点,求f(|x 1|)间断点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:06:02
x=0,可去间断点
π/2,3π/2为第一类可去间断点(极限存在且均为1)π为第二类无穷间断点(x从正向趋近是无穷,负向是0)
使分母为0的点都是间断点即sinπx=0的点都是即x=k,k为任意整数.都是间断点显然有无数个.
f(x)=(x^3-x)/sin(πx)=x(x-1)(x+1)/sin(πx)考虑sin(πx)=0的点1.x=0,x=-1,x=1第一类可去间断点∵lim(x->0)f(x)=-1/π,lim(x
f(x)=(x^2-4)/(x^2-5x+6)=(x^2-4)/[(x-2)(x-3)]间断点为x=2,x=3对间断点x=2lim(x→2-)f(x)=lim(x→2+)f(x)=-4,x=2为第一类
函数f(x)只在x=0处没有定义,所以x=0是间断点.x→0时,f(x)=xcos^2(1/x)是无穷小与有界函数乘积的形式,所以f(x)→0所以,x=0是可去间断点
cosθ=(-t^)/(+t^),tanθ=t/(-t^).法二.几何法由斜率公式把k=f(θ)=(sinθ-)/(cosθ-)看成单位圆上的动点p(cosθ,sinθ)与定点a(,)连线的斜率.问题
连续区间(-无穷大,-1)(-1,0)(0,1)(1,无穷大).-1,0,1是间断点.只有1是可去间断点,令f(1)=0.5即可.再问:请问为什么答案说是:1为可去间断点,0为跳跃间断点,-1为无穷间
f(x)=(x^2-1)/(x^2-3x+2)=(x+1)(x-1)/[(x-2)(x-1)]=(x+1)/(x-2)=1+3/(x-2)(x≠1且≠2)所以间断点为x=1,x=2都是第二类间断点
当X→0+时,f(x)→π/2,当X→0-时,f(x)→-π/2,左右极限存在但不相等,故是跳跃间断点,属于第一类间断点.
课改改的太离谱了,过了好久都忘了,应该就是求1/sinx的间断点.不知道怎么写的了,这是个例子:y=1/sinx定义域:sinx≠0等价于:x≠0,且sinx≠0,即x≠kπ(k为整数)也就是说,当x
∵y=x/tanx∴x=kπ,x=kπ+π/2(K是整数)是它的间断点∵f(0+0)=f(0-0)=1(K=0时)f(kπ+0)和f(kπ-0)都不存在(k≠0时)f(kπ+π/2+0)=f(kπ+π
1、当x0时,e^(tx)→+∞,e^(-tx)→0f(x)=lim[t→+∞][e^(tx)-1]/[e^(tx)+1]=lim[t→+∞][1-e^(-tx)]/[1+e^(-tx)]=1因此:f
在间断点x,f(x)两边可以取到一个开集(y1,y2),f(x)的取值空间不包括这个开集.而开集(y1,y2)包含有理数,这样间断点x就可以用一个有理数表示.而R空间的有理数集是可数的,所以间断点可数
f(x)=(x-1)/(x-1)(x+2),当x=1,x=-2时函数没有意义,故是函数间断点,它们都属于第二类间断点,而lim[x→1]f(x)=1/3,极限存在,若补充定义,f(1)=1/3,故x=
f(x)=sinπx/[x(x-1)]lim(x->1)f(x)doesnotexistx=1,间断点再问:是什么间断点?
x=0x=1是间断点,lim(x→0)f(x)=∞∴x=0是无穷间断点lim(x→1)f(x)=2∴x=1是可去间断点.
x=kπ+π/2无定义且在两边都趋于无穷所以是无穷间断点