已知F1,F2为椭圆x方 100 y方 b方=1的左.右焦点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:34:57
已知F1,F2为椭圆x方 100 y方 b方=1的左.右焦点
设F1,F2分别是椭圆x

由题意F2(3,0),|MF2|=5,由椭圆的定义可得,|PM|+|PF1|=2a+|PM|-|PF2|=10+|PM|-|PF2|≤10+|MF2|=15,当且仅当P,F2,M三点共线时取等号,故答

已知:P是椭圆25分之X方 + 16分之Y方 =1 上的一点,F1,F2是椭圆的两个焦点,且角F1PF2=30度,求F1

给你找了个相似例题:已知F1、F2是椭圆C:x225+y29=1的两个焦点,P为椭圆上一点,且∠F1PF2=90°,则△PF1F2的面积为9.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1

已知椭圆C1的左右焦点分别为F1,F2,抛物线C2以F1为顶点,以F2为焦点,

设P到椭圆左准线的距离为D,则|PF1|=eD又因为|PF1|=e|PF2|,所以|PF2|=D,即椭圆和抛物线的准线重合,而抛物线C2以F1为顶点,以F2为焦点所以椭圆的焦准距等于抛物线焦准距的一半

已知椭圆G的中心在坐标原点,离心率为3分之根号5,焦点F1、F2在x轴上,椭圆G上一点N到F1和F2的距离之和为6.

1.第一问从略,椭圆方程为x^2/9+y^2/4=12.从∠F1NF2=90°可知F1,N,F2共圆,且F1F2为直径,圆半径长=c=√5,圆方程为x^2+y^2=5,则N为此圆形与椭圆的交点之一,二

已知椭圆x^2/9+y^2/5=1的焦点为F1,F2在直线l上找一点M,求以F1,F2为焦点,通过点M且长轴最短的椭圆方

直线没有啊,给你解题思路:由题意:2a=│MF1│+│MF2│即在直线l上找一点M使得到直线外两定点F1、F2的距离和为最小,这是在初中学习轴对称的一个基本例题,找出F2关于l的对称点F2',直线F1

已知椭圆x2/2+y2=1,椭圆左右焦点为F1,F2,A,B是椭圆上的两个不同的点,A B分别交与x轴的上下方 满足F1

设直线AB的方程为x=ky+m,其与x轴交点C的坐标为m;代入椭圆方程:(ky+m)²/2+y²=1→(k²+2)y²+2kmy+m²-2=0;△=4

已知椭圆x^2/45+y^2/20=1的两个焦点为F1,F2,P为椭圆上一点,若三角形PF1F2为直角三角形(角F1PF

椭圆x^2/45+y^2/20=1c²=a²-b²=45-20=25∴c=5,|F1F2|=10∵P在椭圆上∴|PF1|+|PF2|=2a=2√45=6√5①∵角F1PF

点P是椭圆16X方+25Y方=1600上一点,F1,F2,是椭圆的两个焦点.又知点P在X轴上方,F2为椭圆的右焦点,直线

椭圆:x^2/100+y^2/64=1,则:a=10,b=8,c=6,焦点F1(-6,0),F2(6,0),|F1F2|=2c=12,直线PF2的斜率:k=-4√3,则:直线方程为:y=-4√3(x-

已知F1、F2是椭圆x2+y

∵F1、F2是椭圆x2+y22=1的两个焦点,∴F1(0,-1),a=2,b=c=1,∵AB是过焦点F1的一条动弦,∴将直线AB绕F1点旋转,根据椭圆的几何性质,得:当AB与椭圆长轴垂直时,△ABF2

已知椭圆5x^2+9y^2=45的左、右焦点分别为F1、F2……

|PA|+|PF1|=6-|PF2|+|PA|||PF2|-|PA||≤|AF2|=2^(1\2)|PA|+|PF1|最大值为6+2^(1\2)最小值为6-2^(1\2)以P,A,F2为顶点的三角形两

设F1,F2是椭圆C:x

∵F1,F2是椭圆Cx2a2+y2b2=1(a>b>0)的左、右焦点,过F1的直线l与C交于A,B两点,AB⊥AF2,|AB|:|AF2|=3:4,如图:∴不妨令|AB|=3,|AF2|=4,再令|A

已知椭圆X的平方/45+y的平方/20=1的左右焦点分别为F1,F2.

1.直线AB为x=0此时A,B为椭圆与y轴的两个交点,A(2√5,0)B(-2√5,0),F2(5,0)此时三角形ABF2的面积=1/2*5*4√5=10√5不等于20矛盾!所以直线AB不为x=02.

圆锥曲线面积问题3已知椭圆X方/3+Y方/2=1的左右焦点分别为F1,F2,过F1的直线交椭圆于B,D两点,过F2的直线

用极坐标方程P(肉)=ep/(1-ecost)e=1/(3^0.5)p=a^2/c-c=2AC=ep/(1-ecost)+ep/(1+ecost)=2ep/(1-(ecost)^2)BD=2ep/(1

已知F1,F2为椭圆x

根据椭圆的定义,△AF1B的周长为16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴椭圆的方程为x216+y24=1,故答案为x216+y24=1

已知椭圆25分之X的平方加上9分之Y的平方的焦点分别为F1,F2,一条直线过F1与椭圆

描述的有点不清楚啊.一条直线过F1与椭圆?(这不是废话吗?过焦点当然得过椭圆,都相交了啊),是求直线与椭圆交点及F1等构成的三角形周长还是求什么的周长?还是我理解的不对?

已知F1,F2是椭圆x²/100+y²/b²的两焦点,P为椭圆上一点,求PF1×PF2的最

这个是不是标准曲线即x²/100+y²/b²=1是的话解题如下:PF1+PF2=2a=20PF1×PF2=PF1×(20-PF1)=-(PF1)²+20(PF1

已知F1,F2分别是椭圆C:x方/a方+y方/b方=1(a>b>0)的左、右焦点,A是椭圆C上的顶点,B是直线AF2与椭

(1)由上:右焦点到上顶点的距离就是a,所以a=2,又a^2=根号6c,所以c²=8/3,从而b²=a²-c²=4/3,故椭圆C的方程为x²/4+3y

椭圆上的三角形面积已知P为椭圆x^2/100 + y^2/64=1上的点,设F1,F2为椭圆的两个焦点,且角F1PF2=

椭圆x的平方比100+y的平方比64=1那么a=10,b=8,c=6F1,F2为椭圆的焦点那么PF1+PF2=2a=20F1F2=2c=12又角F1PF2=60度根据余弦定理cos角F1PF2=(PF

关于解析几何 椭圆已知椭圆方程x^2/3+y^2=1,若F1,F2为椭圆的左、右两个焦点,过F2作直线交椭圆于P、Q,求

设△PQF1周长为L,内切圆半径为r,面积为Sa=√3,焦点坐标F1(-√2,0),F2(√2,0)则L=4a=4√3S=(1/2)rL,得r=(√3/6)S设PQ所在直线方程为x=my-√2联立得(

设F1、F2分别为椭圆C:x

椭圆C的焦点在x轴上,由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2又点A(1,32)在椭圆上,因此14+94b2=1得b2=3,于是c2=1所以椭圆C的方程为x24+y23=1,