已知F1,F2分别是双曲线x2 a2-y2 b2=1的左右焦点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:40:12
已知F1,F2分别是双曲线x2 a2-y2 b2=1的左右焦点
已知F1,F2分别为双曲线X2/A2-Y2/B2=1的左右焦点,过F2与双曲线一条渐近线

过F2(c,0),与双曲线一条渐近线平行的直线为y=b/a(x-c)与另1条渐近线y=-b/ax交点M(c/2,-bc/(2a))∵∠F1MF2为锐角∴|OM|>c,|OM|²>c²

已知F1,F2分别是双曲线x2/a2-y2/b2=1的左右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若三角形

/>焦点F1(-c,0),F2(c,0)由已知得,A(-c,b^2/a);B(-c,-b^2/a)则向量AF2=(2c,-b^2/a);向量AF1=(2c,b^2/a)因为三角形ABF2是锐角三角形所

一道圆锥曲线题,已知F1,F2分别是双曲线C;X2/a2-y2/b2=1的左右焦点,若C上存在一点P,使得|PF2|×|

设P是右支上一点,P到右准线的距离是d,则有PF2/d=e即PF2=ed=e(xo-a^2/c)=exo-a同样可得PF1=exo+a故有|PF1||PF2|=e^2xo^2-a^2=2a^2xo^2

已知F1,F2是双曲线x2/2-y2=1的左右焦点,PQ为右支上两点

双曲线x2/2-y2=1a^2=2,a=√2双曲线定义:|PF1|-|PF2|=2a=2√2|QF1|-|QF2|=2a=2√2两式相加:|PF2|+|QF2|=|PQ|即|PF1|+|QF1|-|P

已知F1,F2是双曲线x2/a2-y2/b2=1(a>0,b>0)的两个焦点,若双曲线上存在一点P ,使得|PF1|,2

|PF1|,2a,|PF2|成等差数列|PF1|+|PF2|=4a不妨设P在右支上,|PF1|-|PF2|=2a|PF1|=3a又PF1|≥a+c∴3a≥a+c2a≥c∴e=c/a≤2又e>1∴1

已知F1,F2分别为双曲线X2/A2-Y2/B2=1的左右焦点若在双曲线右支上有一点P,满足|PF2|=|F1F2|,且

画一个图形,设PF1与圆相切于点M因为|PF2|=|F1F2|所以三角形PF1F2为等腰三角形|F1M|=(1/4)|PF1|又因为在直角三角形F1MO中|F1M|^2=|F1O|^2-a^2=c^2

已知F1、F2是双曲线x

因为双曲线方程为x216−y29=1,所以2a=8.由双曲线的定义得|PF2|-|PF1|=2a=8,①|QF2|-|QF1|=2a=8.②①+②,得|PF2|+|QF2|-(|PF1|+|QF1|)

已知F1,F2分别是双曲线C:x2 a2 −y2 b2 =1(a>0,b>0)的

设|PF1|=n,|PF2|=m,则由双曲线的定义可得m-n=2a①,且三角形PF1F2为直角三角形,故有m2+n2=4c2 ②.再由ca=5可得c=5a.把①和②联立方程组解得m=8a,故

已知F1,F2分别是双曲线C:X2/a2-Y2/b2=1(a>0,b>0)的左,右焦点,

依题意x²/a²-y²/b²=1,y=(b/a)(x-c)求得x=c/2,y=-bc/2a∴M(c/2,-bc/2a),F1(-c,0),F2(c,0),∴向量

已知F1、F2是椭圆x2+y

∵F1、F2是椭圆x2+y22=1的两个焦点,∴F1(0,-1),a=2,b=c=1,∵AB是过焦点F1的一条动弦,∴将直线AB绕F1点旋转,根据椭圆的几何性质,得:当AB与椭圆长轴垂直时,△ABF2

已知双曲线x2/9-y2/16=1的左右焦点分别是f1,f2,若双曲线上的一点p使得角f1pf2=60度求f1pf2的面

可求两个焦点坐标为(-5.0)和(5,0),设PF1=m,PF2=n,则|m-n|=6,由余弦定理得100=m^2+n^2-2mncos60°=m^2+n^2-mn,又(m-n)^2=36,所以mn=

高二双曲线类题型.已知双曲线的方程是16x2-9y2=144的左、右焦点分别为F1和F2,点P在双曲线上,且|PF1|·

详细解答过程请看下面的图片(如果看不清楚就先保存下来再打开来看):

圆锥曲线 试题 已知点F1,F2分别为双曲线x2/a2-y2=1(a>0)的左,右焦点,P为双曲线右支上的任意一点,若|

x^2/a^2-y^2=1PF1^2/PF2>=8aPF1^2/(PF1-2a)>=8aPF1^2-8aPF1+16a^2>=0(PF1-4a)^2>=0PF1最小时,PF1=√(a^2+1)+a4a

已知F1、F2分别为双曲线x 

∵P为双曲线左支上一点,∴|PF1|-|PF2|=-2a,∴|PF2|=|PF1|+2a,①又|PF2|2|PF1|=8a,②∴由①②可得,|PF1|=2a,|PF2|=4a.∴|PF1|+|PF2|

已知F1、F2分别是双曲线x2−y23=1的左、右焦点,过F1斜率为k的直线l1交双曲线的左、右两支分别于A、C两点,过

(1)由题设条件知:l1,l2的方程分别为y=k(x+2),y=-1k(x−2),由3x2−y2=3y=k(x+2),得(3-k2)x2-4k2x-4k2=0,由于l1交双曲线于的左右两支分别于A,C

F1,F2分别是双曲线x2/a2-y2/b2=1的左右焦点,若双曲线上存在点A,使∠F1AF2=90

双曲线上存在点A,使∠F1AF2=90º根据勾股定理|AF1|^2+|AF2|^2=|F1F2|²=4c^2∵|AF1|=3|AF2||AF1|-|AF2|=2a【双曲线定义】∴|

已知F1,F2是双曲线x

∵双曲线方程为x22-y2=1,∴a2=2,a=2∵P、Q为双曲线右支上的两点,∴|PF1|-|PF2|=2a=22,,|QF1|-|QF2|=2a=22,∴|PF1|-|PF2|+|QF1|-|QF

锐角三角形的判定的AF12012•长春模拟)已知点F1、F2分别是双曲线x2 a2 −y2 b2

如图,△ABF2为等腰三角形,要是锐角三角形,只要∠AF2B为锐角即∠F1AF2>45°即AF1<F1F2

设F1,F2分别是双曲线x2-y

设|PF1|=m,|PF2|=n,则|m-n|=2①,m2+n2=40②,②-①2可得2mn=36,∴mn=18,设P点纵坐标为y,则12•210|y|=12•18,∴|y|=91010,∴y=±91