已知f1f2是双曲线x2 a2-y2 b2 1 若在双曲线上满足
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:13:56
由题得,双曲线x2a2-y2b2=1(a>0,b>0)的焦点坐标为(7,0),(-7,0),c=7:且双曲线的离心率为2×74=72=ca⇒a=2.⇒b2=c2-a2=3,双曲线的方程为x24-y23
设PF1与圆相切于点M,过F2做F2H垂直于PF1于H,则H为PF1的中点,∵|PF2|=|F1F2|,∴△PF1F2为等腰三角形,∴|F1M| =14| PF1|,∵直角三角形F
设M(p,q),N(-p,-q),P(s,t),则有k1•k2=t−qs−p•t+qs+p=t2−q2s2−p2,p2a2−q2b2=1,s2a2−t2b2=1,两式相等得:p2a2−q2b2=s2a
三角形PF1F2的面积是48
1.c=5,F1F2=10,设PF1=x,F2=y,则x-y的绝对值为6,xy=32,可以X的平方+y的平方=100,根据勾股定理的逆定理知,角F1PF2=90度2.设PF1=x,F2=y,则x-y的
由题设条件可知△ABC为等腰三角形,只要∠AF2B为钝角即可,所以有b2a>2c,即2ac<c2-a2,解出e∈(1+2,+∞),故选D.
1.a^2=16a=4b^2=20c^2=a^2+b^2=36c=6焦点在y轴上F1(0,-6)F2(0,6)2.双曲线定义||PF1|-|PF2||=2a|8-|PF2||=8|PF2|=0或|PF
∵△ABE是直角三角形,∴∠AEB为直角∵双曲线关于x轴对称,且直线AB垂直x轴∴∠AEF=∠BEF=45°∴|AF|=|EF|∵F为左焦点,设其坐标为(-c,0)∴|AF|=b2a∴|EF|=a+c
设F1、F2坐标为(-c,0),(c,0),|F1F2|=2c焦点在x轴上,a=2,c^2=4+b^2,设|PF2|=x,根据双曲线“动点与两个定点距离之差的绝对值为定值2a”的基本性质得:||PF1
设PF1=m,PF2=n,由题意得,C=√b^2+4∴|F1F2|=2√b^2+4又,PF1,F1F2,PF2成等比数列∴|F1F2|^2=PF1*PF2即m*n=|F1F2|^2=4(b^2+4)①
设|PF1|=m,|PF2|=n,设P在第一象限,m-n=2a,m2+n2=(2c)2,n+2c=2m∴5a2-6ac+c2=0,e2-6e+5=0,e=5或e=1(舍去),∴e=5
a=2,b=1,c^2=a^2+b^2F1P-F2P=2a=4F1P^2+F2P^2=(2c)^2=20s=(F1P*F1P)/2=(20-4^)/4=1不知道对不对,自己看着办哈.
∵F1是左焦点∴F1A>F2A∴∠F1AF2一定是锐角∵AB⊥x轴∴F2A=F2B∠F1AF2=∠F1BF2∵三角形ABF2是锐角三角形∴只需∠AF2B是锐角∵∠AF2F1=∠BF2F1=1/2
设MF1与双曲线的交点为P,因为P是正三角形边上的中点,根据三线合一有PF2为MF1边上的高,因为F1F2的长为2c,所以PF1的长为c,PF2的长为根3倍c,根据双曲线的定义,有PF2-PF1=2a
已知F1,F2是双曲线x2a2-y2b2=1(a>0,b>0)的焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则:设|F1F2|=2c进一步解得:|MF1|=c,|MF2|
PF1F2是直角三角形e=c/a=5c=5a而由双曲线的定义可知:PF1-PF2=2a(1)F1F2=2c=10a(2)又在直角三角形中,PF1^2+PF2^2=F1F2^2(3)由上面三式,解得PF
解;设MF2中点为N(F1为左焦点,F2为右焦点)因为三角形MF1F2为正三角形,所以NF2垂直于MF2,由勾股定理,NF1^2+NF2^2=F1F2^2,且由双曲线几何定义,NF1-NF2=2a,又
由题意,直线AB方程为:x=-c,其中c=a2+b2因此,设A(-c,y0),B(-c,-y0),∴c2a2-y02b2=1,解之y0=b2a,得|AF|=b2a,∵双曲线的右顶点在以AB为直径的圆内
∵PQ是经过F1且垂直于x轴的双曲线的弦,∠PF2Q=90°,∴|PF1|=|F1F2|∴b2a=2c∴e2-2e-1=0∴e=1±2∵e>1∴e=1+2故选:B.
由a^2+b^2=c^2得,c=5所以|PF2|=|F1F2|=5*2=10,再由双曲线定义得:|PF1|-|PF2|=2a=6,所以|PF1|=16,所以三角形PF1F2是等腰三角