已知fx=asinx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:47:04
fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma
令t=sinx则f=(1-t^2)+2t=-t^2+2t+1=-(t-1)^2+2因为|t|
证明:由于:f(x+y)=f(x)+f(y)则:令x=y=0则有:f(0+0)=f(0)+f(0)f(0)=2f(0)则:f(0)=0再令:y=-x则有:f[x+(-x)]=f(x)+f(-x)f(0
fx=a/2sin2x-a根号(3)/2(1+cos2x)+根号(3)/2a+b=asin(2x-pai/3)+bpai/2
f(x)=√3asinx+bcos(x-π/3)f(x)图像过点(派/3,1/2),(7派/6,0)所以3/2*a+b=1/2-√3/2a-√3/2b=0解得:a=2+√3,b=-2-√3∴f(x)=
f(x)=-(1-sin^2x)-2asinx+a=sin^2x-2asinx+a-1=(sinx-a)^2-a^2+a-1在区间[0,Pai]上有0再问:额。。能不能解释下(1)啊,没看懂再答:对称
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
解f(x)=sinx+acosx=√(1+a²)sin(x+ξ)(cosξ=1/√(1+a²))将x=5π/3代入得f(5π/3)=√(1+a²)sin(5π/3+ξ)=
你还没有求出a来,所以,你开始就有问题了,注意下面我的解法,(1)是解决此类对称轴问题最好的方法.再答:再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后
你的公式应该是fx=asinx+bcosx吧?如果是这样的话,那么对上式可以进行转换fx=asinx+bcosx=根号(a方+b方)sin(x+y)其中tany是关于a、b的一个式子,不用去管,然后后
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
辅助角公式对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=√(a^2+b^2)(acosx/√(a^2+b^2)+bsinx/√(a^2+b^2)),令点(b,a)为某一角φ
解由函数y=fx是偶函数,在x属于(0,正无穷)上递减,则函数y=f(x)在x属于(负无穷大,0)是增函数,即当x1,x2属于(负无穷大,0)且x1<x2时,f(x1)<f(x2),且f(x1),f(
第一题A.第二题B
f(x)的定义域取值的集合应只有两个元素,即正1和负1.显然x的值不能取0,现假设f(x)可以取其他的值a,那么有f(a)+f(1/a)=3a,同样有f(1/a)+f(a)=3/a,比较上面两等式的左
解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1
asin(π/4)+bcos(π/4)=sqrt(2);a+b=2;fmax=sqrt(10)=sqrt(a^2+b^2);a^2+b^2=10;a=3;b=-1ora=-1;b=3;2.当f(π/3
1)根据题意f(x)=asinx+bcosx.=√(a²+b²)[a/√(a²+b²)sinx+b/√(a²+b²)*cosx)=√(a