已知fx等于lnx-ax-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:19:27
已知fx等于lnx-ax-1
已知函数fx=ax-b/x-2lnx,f(1)=0.

易求得a=b=1,f'(x)=1+1/x^2-2/xa(n+1)=a(n)^2-2na(n)+1再数学归纳法证明...

已知函数Fx=Ax+1+lNx/x,其中A属于R 若Fx在定义域上单调递增,求实数A的取值范围

定义域为x>0在定义域单调增,即f'(x)>=0恒成立f'(x)=a+(1-lnx)/x^2>=0a>=(lnx-1)/x^2=g(x)现求g(x)的最大值.由g'(x)=[x-2x(lnx-1)]/

已知函数fx=ax-1-lnx,若fx≥0对任意的x∈(0,+∞)恒成立,求实数a的取值范围

再答:亲,我已经帮你解决问题了,说好的好评呢再答:亲,我已经帮你解决问题了,说好的好评呢

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=ax+lnx ( a属于R) 1,若a等于2,求曲线y=fx在x=1处上切线的斜率

(Ⅰ)由已知f′(x)=2+1x(x>0),则f'(1)=2+1=3.故曲线y=f(x)在x=1处切线的斜率为3;(Ⅱ)f′(x)=a+1x=ax+1x(x>0).①当a≥0时,由于x>0,故ax+1

已知函数fx=ax+lnx ( a属于R)

(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0

已知函数fx=ax+lnx 1 若a=2 求曲线y=fx在x=1处切线的斜率

f(x)=2x+lnx切线斜率即导数求导,带入f'(x)=x+1/xf'(1)=2

已知函数fx=ax减x平方减lnx ,a属于R 当a等于零时 判断fx的单调性 急

当a=0的时候f(x)=-x^2-lnxf'(x)=-2x-1/x令f'(x)=0得到=-2x-1/x=0,无解显然在(-∞,0)f'(x)>0在(0,+∞)f'(x)

已知函数fx=lnx+ax^2+x,gx=e^x-ax

再问:...好像不太对

已知函数fx=lnx+(1-x)/(ax),其中a为大于零的常数.

答案如图所示,友情提示:点击图片可查看大图

已知函数fx=ax+lnx (a属于R) (1)求fx的单调递增区间 (2)已知gx=4^

推荐回答1.f'(x)=a+1/x=a(x+1/a)/x当a>0时,-1/a0,解得:0

已知函数fx=-x^2+ax+lnx+b 若函数fx在x=1处切线方程y=2 求a,b值

f(x)=-x^2+ax+lnx+b,f'(x)=-2x+a+1/x,由已知得,f(1)=2,所以-1+a+b=2,--------(1)同时f'(1)=0,所以-2+a+1=0,-------(2)

设fx=1/2*ax^2-2ax+lnx ,已知函数fx有两个极值点x1x2

fx=1/2*ax^2-2ax+lnx有两个极值点x1x2,则fx'=ax-2a+1/x=0有x1x2两个零点.由函数定义域知x>0,所以,ax^2-2ax+1=0有x1x2两个零点.所以,(2a)^

已知函数fx=x+ax-lnx,当a=1时,求fx的单调区间

fx的导数=1+a-1/x,把a=1带入,原式=2-1/x当2-1/x>0即x>1/2或x再问:嗯嗯再答:采纳一下吧,纯手打,谢了再问:呵呵。、不错

已知函数fx=x的平方+ax-lnx(a属于R) 1,若函数fx在《1,2》上是减函数,求实数a的取值

希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以

已知函数fx等于ax平方-4分之3ax+b fx等于2 f1等于1 - 百度

fx等于2这个是错的吧,应该是某个X值等2,直接把这个值了X=1时f1等于1代进去,然后解二元一次方程,很简单.

已知函数fx等于x^2 ax

f'(x)=2x+a>0x>-a/2-a/2=-2a=4

已知函数fx=lnx-ax(x>1)求fx单调区间

f'(x)=1/x-ax>1,所以00即证umin(a)=u(1/e)=x/lnx-lnx+x/e-2>0恒成立.令t(x)=x/lnx-lnx+x/e-2(x>1)令t'(x)=(lnx-1)/ln