已知n阶矩阵A满足A^2-A3 2E=0,证明A的特征值只能是1或2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:42:52
设方阵满足A^2-4A+E=0,证明A及4A+E均可逆,并求A及4A+E的逆矩阵因为A^2-4A+E=0所以A(A-4E)=-E所以A可逆,且A逆=-
A=A^24A^2-4A+E=E(E-2A)(E-2A)=E所以E-2A可逆且(E-2A)的负一次方等于E-2A
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.
因为A^2(A-2E)=3A-11E所以A^3-2A^2-3A+11E=0所以A^2(A+2E)-4A(A+2E)+5(A+2E)+E=0所以(A^2-4A+5E)(A+2E)=E所以A+2E可逆,且
证明:因为A^2=A所以A(A-I)=0若detA≠0则A可逆.则A-I=A^-1A(A-I)=A^-10=0所以有A=I.故A=I或detA=0
A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2
A^3+A^2-2A=0A^2(A+I)-2A-2I=-2I(A^2-2I)(A+I)=-2I-1/2(A^2-2I)(A+I)=I所以A+I可逆逆阵是-1/2(A^2-2I)
1这个A不一定是可逆的.如果不可逆,A^(-1)不存在2跟第一个一样的错误
证明:因为A+B=AB所以(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且(A-E)^-1=B-E.由上知A-E与B-E互逆故有(B-E)(A-E)=E可得BA=A+B从而有AB=BA.
(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(
因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).
刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.
B(A-E)=(A^2+A)(A-E)=A^3-E=2E-E=E所以B可逆,逆为A-E
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
这样处理:设λ是A的特征值则λ^2-λ是A^2-A的特征值由A^2-A=0,零矩阵的特征值只能是0所以λ^2-λ=0即λ(λ-1)=0所以A的特征值为0或1.
由a1+3a2+3^2a3+……+3^(n-1)an=n/3和a1+3a2+3^2a3+……+3^(n-1)an+3^na_(n+1)=(n+1)/3得3^n*a_(n+1)=1/3所以a_(n+1)