已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:00:32
由OP=OA+λ(AB/sinC+AC/sinB),得AP=OA-OP=λ(AB/sinC+AC/sinB),由正弦定理,|AB/sinC|=|ACsinB|,∴P的轨迹是∠BAC的平分线所在直线,一
向量符号不好打.(1)∵2AC+CB=0,∴2AC=BC(此处可画图,因为AC,BC同向,A为BC中点)∴BC=-2AB∴OC=OB+BC=OB-2AB(2)∵2AC=BC∴A为BC中点,又点D是OB
分别是三角形的中线交三边中点
向量符号不好打.(1)∵2AC+CB=0,∴2AC=BC(此处可画图,因为AC,BC同向,A为BC中点)∴BC=-2AB∴OC=OB+BC=OB-2AB(2)∵2AC=BC∴A为BC中点,又点D是OB
一个向量除以它的长度,就是它是单位向量,式子中括号内的意思是,P点在角A的角平分线上,而内切圆圆心,肯定在角A的角平分线上所以点P肯定经过内心.
取AB中点为M,CM是AB边上的中线,1/2(向量OA+向量OB)=向量OMOP=1/3(1/2向量OA+1/2向量OB+2向量OC)=1/3(向量OM+2向量OC)=1/3向量OM+2/3*向量OC
x=1/2OP=OA+1/2(AB+AC)=OA+1/2(OB+OC-2OA)=1/2(OB+OC)PA.(PB+PC)=(OA-OP).(OB+OC-2OP)=(OA-1/2(OB+OC)).(OB
这个,楼主,图不清楚啊这个
再问:老师您太牛了太感谢了^_^
ABsinB和ACsinC都等于边BC上的高H,是一个数量,设为h.所以原式可变为OP=OA+λh(AB+AC)AB+AC是以AB,AC为临边的平行四边形的对角线.其必过BC中点设为D而OA+λh(A
AB+AC是以AB,AC为边画的平行四边形,得对角线AD,λ(AB+AC)使得终点P仍在AD上,即终点P在三角形ABC的BC边的中线所在直线上运动,随着λ的变化而变化,某个λ时刚好是重心,入取0.00
OA-2OB+OC=0移向可得OA-OB=OB-OCBA=CBAB的模=BA的模CB的模=BC的模所以AB的模/BC的模=1
P,A,B三点共线,则存在唯一实数t,使得向量PA=tPB,(OA-OP)=t(OB-OP),(t-1)OP=-OA+tOB,OP=-1/(t-1)OA+t/(t-1)OB,则a=-1/(t-1),b
不是我写我只是搬运工……通过观察,发现点O可以化没掉.具体如下:两边都×2:2OP=OB+OC+2λ(AB/|AB|cosB+AC/|AC|cosC).移项:(OP-OB)+(OP-OC)=2λ(AB
A设BC中点为D化简为OP=OA+mAD设重心为Q则,OQ=OA+AQ=OA+2/3AD因此,当P运动到m=2/3的位置时,恰好为三角形重心
显然点A为线段BC的中点,以OB,OC为邻边做平行四边形BOCD,连接OD,(向量符就不写了)则BD=OC,再结合条件有BD=λOA+μOB(1),又BD=OD-OB=2OA-OB(2),比较(1)式
取AB中点为M,1/2向量OA+1/2向量OB=向量OMOP=1/3(1/2向量OA+1/2向量OB+2向量OC)=1/3(向量OM+2向量OC)(O是三角形ABC的重心=1/3(向量OM-4向量OM
"2倍的(OC向量-OA向量)+OB向量-OC向量=0,得OC=2OA+OB
1设重心为GOG=1/3(OA+OB+OC)D为BC中点2AD=AB+AC整理向量等式得GP=2/3k×AD而G在AD上,且K不等于0,即P不会与G重合P点轨迹为直线AD不包括G,一定过AB中点.故选
这个应该是向量吧?AB上方是不是还有一箭头?在三角形ABC中,AB/|AB|是指向量AB上的单位向量,也就是长度(模)为1个单位长度,方向和向量AB相同的向量,既然是这样,AB/|AB|+AC/|AC