已知O,A,B是平面上的三点,直线AB上有一点C,满足2向量AC 向量CB=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:07:45
已知O,A,B是平面上的三点,直线AB上有一点C,满足2向量AC 向量CB=
数学向量证明题已知O为原点,A、B、C为平面内三点,求证:A、B、C三点在一条直线上的充要条件是,OC=αOA+βOB,

1)充分性αOA+βOB=OC=(α+β)OC因此α(OA-OC)+β(OB-OC)=0因此αCA+βCB=0故A,B,C共线2)必要性A,B,C共线因此存在不全为零的实数s和t,使得sAC+tBC=

已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2倍的向量AC+向量CB=0 ..

向量符号不好打.(1)∵2AC+CB=0,∴2AC=BC(此处可画图,因为AC,BC同向,A为BC中点)∴BC=-2AB∴OC=OB+BC=OB-2AB(2)∵2AC=BC∴A为BC中点,又点D是OB

O是平面上一定点,A,B,C是平面上不共线三点,求p的

一个向量除以它的长度,就是它是单位向量,式子中括号内的意思是,P点在角A的角平分线上,而内切圆圆心,肯定在角A的角平分线上所以点P肯定经过内心.

已知O,A,B是平面上的三点,直线AB上有一点C,满足向量AC=向量CB

过程省略向量2字:AC=OC-OA,CB=OB-OC,而:AC=CB,故:OC-OA=OB-OC即:2OC=OA+OB,故:OC=OA/2+OB/2,选D再问:谢谢!能帮我看一下这题吗?http://

已知O,A,B,是平面上的三点,直线AB上有一点C,满足2向量AB+向量CB=0向量,则向量OC等于?

由向量2AB+CB=0,可知向量AB和CB共线,方向相反,|CB|=2|AB|,B点在AC中间,连结OA、OB、OC,向量OC=OB+BC,向量BC=2AB,向量AB=OB-OA,向量BC=2(OB-

已知A、B、C是平面上不共线的三点,O是三角形ABC的垂心,

取AB中点为M,CM是AB边上的中线,1/2(向量OA+向量OB)=向量OMOP=1/3(1/2向量OA+1/2向量OB+2向量OC)=1/3(向量OM+2向量OC)=1/3向量OM+2/3*向量OC

O是平面上一点,A B C是平面上不共线的三点,平面内的的动点P满足向量OP=向量OA+X(向量AB+向量AC),若X=

x=1/2OP=OA+1/2(AB+AC)=OA+1/2(OB+OC-2OA)=1/2(OB+OC)PA.(PB+PC)=(OA-OP).(OB+OC-2OP)=(OA-1/2(OB+OC)).(OB

已知O,A,B是平面上不共线的三点,若点C满足

这个,楼主,图不清楚啊这个

A、B、C三点共线,O为平面上一点,已知向量OC= λ 向量OA+μ 向量OB,求λ+ μ的值.

已知OC=xOA+yOB,则OC=x(OC+CA)+y(OC+CB)=(x+y)OC+xCA+yCB即(1-λ-μ)OC=λCA+μCB因为A,B,C共线,所以可以设λCA+μCB=kCA,则(1-λ

已知O,A,B是平面内不共线的三点,满足向量OP=A*向量OA+B*向量OB,则P,A,B三点共线的充要条件是A+B=?

P,A,B三点共线,则存在唯一实数t,使得向量PA=tPB,(OA-OP)=t(OB-OP),(t-1)OP=-OA+tOB,OP=-1/(t-1)OA+t/(t-1)OB,则a=-1/(t-1),b

已知O是平面上的一定点,A,B,C是平面上不共线的三个点

不是我写我只是搬运工……通过观察,发现点O可以化没掉.具体如下:两边都×2:2OP=OB+OC+2λ(AB/|AB|cosB+AC/|AC|cosC).移项:(OP-OB)+(OP-OC)=2λ(AB

(1)O,A,B,C是平面上的四点,已知A,B,C三点共线且向量OA=5/4向量OB+X向量OC,则X=()

对于第一题因为ABC共线固有向量OA-向量OB=β(向量OB-向量OC)即OA=(β+1)OB-βOC与题目已知的OA=5/4OB+XOC对比可算出β为-1/4即X为1/4第二题没看懂啊既然a是向量b

已知O为平面内一点,A.B.C是平面上不共线的三点,若动点P满足 向量OP=向量OA+m(向量AB+1/2向量BC),(

A设BC中点为D化简为OP=OA+mAD设重心为Q则,OQ=OA+AQ=OA+2/3AD因此,当P运动到m=2/3的位置时,恰好为三角形重心

已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2向量AC+向量CB=0,若向量OC=λOA+μOB,(其中

显然点A为线段BC的中点,以OB,OC为邻边做平行四边形BOCD,连接OD,(向量符就不写了)则BD=OC,再结合条件有BD=λOA+μOB(1),又BD=OD-OB=2OA-OB(2),比较(1)式

已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC)

取AB中点为M,1/2向量OA+1/2向量OB=向量OMOP=1/3(1/2向量OA+1/2向量OB+2向量OC)=1/3(向量OM+2向量OC)(O是三角形ABC的重心=1/3(向量OM-4向量OM

1、已知A、B、C是平面上不共线的三点,O为△ABC的外心,动点P满足向量OP=【(1-k)向量OA+(1-k)向量OB

1设重心为GOG=1/3(OA+OB+OC)D为BC中点2AD=AB+AC整理向量等式得GP=2/3k×AD而G在AD上,且K不等于0,即P不会与G重合P点轨迹为直线AD不包括G,一定过AB中点.故选

已知点O是平面上一定点,A、B、C是平面上不共线的三点

这个应该是向量吧?AB上方是不是还有一箭头?在三角形ABC中,AB/|AB|是指向量AB上的单位向量,也就是长度(模)为1个单位长度,方向和向量AB相同的向量,既然是这样,AB/|AB|+AC/|AC

已知点OPQ是平面上的三点,PQ=20cm,OP+OQ=30cm,下列说法,正确的是:A.点O一定在直线PQ外 B.点O

点OPQ是平面上的三点,PQ=20cm,OP+OQ=30cm,A.点O一定在直线PQ外,B.点O一定在PQ上,上述两种说法都不正确.正确的说法是,点O不在线段PQ上,点O在以P,Q为焦点,30cm为长