已知P是△ABC内一点.且满足PA 2PB 3PC=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:05:52
AB=PB-PA,故:PA+PB+PC=PB-PA即:PC=-2PA=2AP,即:PC与AP共线且:|PC|=2|AP|,即P点是AC边的一个三等分点选D
证明:把⊿APB绕点A旋转至⊿ADC的位置(如图).则∠ADC=∠APB=∠APC;DC=PB,AD=AP.∴∠ADP=∠APD.∴∠CDP=∠CPD(等式性质)则PC=DC=PB.
(需要数量积的知识)向量OA+向量OB+向量OC=向量OP则向量OA+向量OB+向量OC=向量OP-向量OC∴向量OA+向量OB=向量CP∴向量CP.向量AB=(向量OP-向量OC)*(向量OB-向量
∵PA=PB,∴P在AB的垂直平分线上,同理P在AC,BC的垂直平分线上.∴点P是△ABC三边垂直平分线的交点.故选D.
选C,点P是△ABC的重心.理由如下:取AB中点M,连结PM并延长至Q,使得MQ=PM,则:四边形APBQ是平行四边形【对角线互相平分】从而,有:PA+PB=PQ=2PM又PA+PB+PC=0,则:2
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
设向量CQ=λ向量CP,则向量PQ=向量CQ-向量CP=(λ-1)向量CP.依题意,向量CP=-1/3(向量AP+2向量BP)=1/3(向量PA+2向量PB)因为Q在AB上,所以A、B、Q三点共线,所
你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
∠APB=∠BPC=∠CPA=120°2PA=2a,则PA=aPB×PC=PA^2=a^2(PB+PC)^2=PB^2+PC^2+2PB*PC=4a^2PB^2+PC^2=2a^2PB^2+PC^2-
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
以A为轴将三角形ABP逆时针旋转60度,AB、AC重合,P新位置Q则:AP=AQ,QC=BP,∠BAP=∠CAQ∠APB=∠AQC所以:∠BAP+∠PAC=∠CAQ+∠PAC=∠BAC所以:三角形AP
这样吧,设A在(0,0),B在(a,0),C在x轴上方令AB=a,AC=b,|AP|=l,角BCA=角A,于是有向量AC=b(cosA+i*sinA)于是l=1/5*AB+2/5*AC=1/5*a+2
设向量CA=a,向量CB=b,向量CQ=λ*向量CP=λp,(λ为实数),则向量AP=CP-CA=p-a,向量BP=CP-CB=p-b,代入已知条件AP+2BP+3CP=0得(p-a)+2(p-b)+
作辅助线,延长bp到ac,相交点为rab+ar>brcr+pr>cp然后相加ab+ar+cr+pr>br+cp由于ac=ar+crbr=bp+pr带入上不等式所以ab+ac>bp+cp
P是平面内一点,且满足向量OA+OB+OC=OP则P是重心你画个图就明白了
证:在三角形ABC外侧,作角BAD=角CAP,且AD=AP,连接BD,PD因为角BAD=角CAP,AD=AP,AB=AC所以三角形ABD全等三角形ACP所以角ADB=角APC,BD=PC因为角APB>
PA+2PB+3PC=0(PA+2PB+3PC)xPA=0xPA(x:crossproduct)2PBxPA+3PCxPA=02|PBxPA|=3|PCxPA|S1=(3/2)S3(1)alsoPA+
解,实际只有四点:三角形内1点,外4点.以⊿ABC的各边分别向外做正⊿ABP,⊿BCQ,⊿ACR,连接PC,AQ,BR交于一点O.则,P,Q,R,O为满足点.可以证明:OP,OQ,OR分别是AB,BC