已知P是双曲线x^2 64-y^2 36=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 23:57:20
已知P是双曲线x^2 64-y^2 36=1
已知点P是双曲线x^2/16-y^2/9=1右支上的一点,F1,F2分别是双曲线的左右焦点

依题设,M为△PF1F2的内心,则M到三边的距离相等,设为d由S△MPF1=S△MPF2+mS△MF1F2,得PF1*d/2=PF2*d/2+mF1F2*d/2即PF1-PF2=mF1F2亦即m=(P

已知双曲线16x²-9y=144中,F1,F2是其两焦点,点P在双曲线上,并且|PF1|*|PF2|=32

16x²-9y=144这好像不是双曲线的方程吧,这应该是抛物线啊!是不是应该是16x²-9y²=144啊?用双曲线的定义||PF1|-|PF2||=2a,再结合已知,求出

已知双曲线16x^2-9y^2=144,F1,F2是两个焦点P在双曲线上且|pF1|*|PF2|=32求角P1PF2

楼主问题打错了吧,应该是角F1PF2…………a=3,b=4则c=5|F1F2|=2c=10|PF1-PF2|=2a=6cos∠F1PF2=(PF1²+PF2²-F1F2²

已知双曲线16x^2-9y^2=144,F1,F2是两个焦点P在双曲线上且|pF1|*|PF2|=3求角P1PF2

假设pf1大则有方法如下pf1-pf2=6pf1*pf2=3求出cos角f1pf2=(pf1^2+pf2^2-f1f2^2)/(2*pf1*pf2)=[(pf1-pf2)^2+2*pf1*pf2-f1

已知P(x,y)是抛物线y2=-8x的准线与双曲线x

由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y

已知F1,F2是双曲线x^2 /16 - y^2 /9=1的两个焦点,P为双曲线上一点,

a=4,b=3,则c=5F1F2=2c=10,|PF1-PF2|=2a=8因为PF1⊥PF2所以:F1P²+F2P²=F1F2²=100F1P²+F2P

已知点p是双曲线12x^2-4y^2=48上的一点,F1,F2分别是该双曲线的左右焦点,且

点P是双曲线12x^2-4y^2=48,即x^2/4-y^2/12=1上的一点,∴设P(2secu,2√3tanu)它的左右焦点分别是F1(-4,0),F2(4,0),∴PF1^2=(2secu+4)

已知双曲线x^2/a^2-y^2/b^2=1的左右焦点分别是F1,F2 点p在双曲线的右支上

根据|PF1|-|PF2|=2a,又|PF1|=4|PF2|,故|PF1|=2a\3,|PF2|=8a\3,于是2c

已知F1,F2是双曲线(x^2/4)-(y^/21)=1的两个焦点,点P在双曲线上若PF1=6,则PF2=?

1、∵a=2,c=5∴右枝上的点的x≥7,点P不能在双曲线的右枝上2、本题中:∵A、B两点关于直线y=x对称∴设A(a,b),则B(b,a)又点A、B都在抛物线上∴b=a^2-3且a=b^2-3解得:

已知点P是双曲线x

根据从圆外一点向圆所引的两条切线长相等可知:|F1M|=|F1S|,|F2M|=|F2T|,|PS|=|PT|①当P在双曲线图象的右支时,而根据双曲线的定义可知|F1M|-|F2M|=|F1P|-|F

已知P(2.-3)是双曲线a²分之x²-b²分之y²,双曲线两个焦点间的距离等于

2c=4c=2c²=4过P4/a²-9/(4-a²)=1所以16-4a²-9a²=4a²-a^4a^4-17a²+16=0a

已知AB分别是双曲线C X^2-Y^2=4的左右顶点,则P是双曲线上在第一象限内的任一点

设p(x,y),则x>2,y>0因为AB分别是双曲线CX^2-Y^2=4的左右顶点所以A(-2.0)B(2,0)设∠PBA=α,∠PAB=β则α为钝角,β为锐角sin(180°-α)=y/根号[(x-

P是双曲线x

双曲线的两个焦点为F1(-5,0)、F2(5,0),为两个圆的圆心,半径分别为r1=3,r2=2,|PM|max=|PF1|+3,|PN|min=|PF2|-2,故|PM|-|PN|的最大值为(|PF

已知F1F2分别是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点,P为双曲线上的一点,

设|PF1|=m,|PF2|=n,设P在第一象限,m-n=2a,m2+n2=(2c)2,n+2c=2m∴5a2-6ac+c2=0,e2-6e+5=0,e=5或e=1(舍去),∴e=5

已知点p是双曲线x²/16 -y²/9=1右支上的一点,F¹,F²分别是双曲线的

赞一个再答:4/5再问:过程再答:再答:赞我一个谢了再答:可收到了再问:yes,赞

已知双曲线的渐进线方程是y=土2/3x,并且双曲线经过点P(3,√7),求此双曲线的标准方程

双曲线的渐进线方程是y=土2/3x即y/2=±x/3可以设双曲线方程为(y/2+x/3)(y/2-x/3)=ky²/4-x²/9=k又过点(3,√7)即7/4-9/9=kk=3/4

已知点P在双曲线x^2/a^2-y^2/b^2=1的右支上.F1,F2是双曲线的两个焦点.

设△PF1F2的内切圆的圆心为O,内切圆切PF1于A点,PF2于B点,F1F2于C点,因为是内切圆,所以有OA⊥PF1,OB⊥PF2,OC⊥F1F2,且PA=PB,AF1=F1C,BF2=CF2.因为

已知双曲线C:x平方除以4减Y平方等于1,P是C上的任意点

渐近线为X土2y=0,点(X,y)到它们分别为:lx土2yI/(1平方+2平方)的平方根.乘起来(X平方-(2y)平方)/5.而由原解析式可得X平方-(2y)平方为4.故定值4/5

已知双曲线x^2/9- y^2/16=1的左、右焦点分别是F1、F2,P是双曲线上的一点,若|PF1|=7

a=3b=4c=5所以F!F2=10PF1=7因为PF2-PF1=2a=6,所以PF2=13,所以最大角是13对的,由余弦定理可以求出余弦值为-1/7,选A