已知p是椭圆x2 4 y2=1上的一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:09:24
已知p是椭圆x2 4 y2=1上的一点
已知点P在椭圆x*2/40+y*2/20=1上,F1,F2是椭圆的两个焦点,三角形F1PF2是直角三角形

以原点为圆心,c为半径作圆:x^2+y^2=20因为三角形F1PF2是直角三角形F1F2为直径所以点P在圆上与原方程联立得x^2=0y^2=20满足条件的点仅有两个(短轴两端点)这样的点P有2个

有关椭圆计算设F1,F2是椭圆9分之X平方加上4分之y平方=1的两个焦点,P在椭圆上,已知P,F1,F2是一个Rt△的三

解c=√5,b=2,a=3因为b=PF2解得F1P=4,F2P=2PF1/PF2=2当F2为直角顶点时取x=c=√5,得y=4/3或-4/3即PF2=4/3,PF1=14/3PF1/PF2=7/2

已知A1A2是椭圆X^2/25+Y^2/16=1长轴上的两个顶点,P是椭圆上

以线段MN为直径的圆恒经过椭圆的焦点.不妨以右焦点F2(3,0)为例说明.设P(5cosa,4sina),A1(-5,0),A2(5,0)右准线的方程X=25/3A1P的方程为y=(4sina/(5c

已知F1F2是椭圆的两个焦点 p为椭圆上一点 角F1PF2=60

1)PF1^2+PF2^2-2PF1PF2cos60=F1F2^2PF1^2+PF2^2-PF1PF2=4c^2(PF1+PF2)^2-3PF1PF2=4c^2PF1PF2=(4a^2-4c^2)/3

已知椭圆x^2/25+y^2/9=1 P是椭圆上一点

1、就是先设所求点位(x,y),然后找出x,y与已知方程对应曲线点A的关系(将其上的点用x.y表示),然后将对应点A的x,y表示的坐标带入方程化简后x,y的函数关系就是所求点的轨迹可设M(x,y),则

已知 F1F2是椭圆 X^2/4+y^2=1的两个焦点,P 是椭圆上的点

答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e

已知F1,F2是椭圆的焦点,P为椭圆上一点,∠F1PF2=60°.

设椭圆方程为 x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(

已知椭圆方程x2\a2+y2\b2=1(a>b>0),设F为椭圆的一个焦点,P是椭圆上的一点

1)设F2为另一焦点,易知y轴将线段|AB|,|FF2|垂直平分根据对称性,可知AFF1B四点构成等腰梯形,对角线相等,有AF1=BF,所以AF+BF=AF+AF1=2a,为定值2)由已知A(-a,0

已知P为椭圆X2/25+4Y2/75=1上一点,F1、F2是椭圆的焦点,角F1PF2=60度,求F1PF2的面积

设|PF1|=r,|PF2|=r',S=b^2*tan(t/2).题中b^2=75/4,t=60度,故三角形F1PF2面积S=(75/4)*(根号3)/3=(25/4)*根号3.

已知点A(1,1),而且F1是椭圆 x2/9 + y2/5 =1的左焦点,P是椭圆上的任意一点,则

在数学上,一个椭圆是两个固定点,不断轨迹之间的水平距离.所谓的重点在两个固定点.通过这种定义,所以绘制椭圆:先准备的线,这些线在每个连接点的两端(在椭圆原样的两个焦点2分);取一支笔线拉紧,这两个时间

已知F1 F2是椭圆的两个焦点,P为椭圆上的一点 ∠F1PF2=60度

1.由焦半径公式:F1P=a+exF2P=a-exF1F2=2c在△PF1F2中应用余弦定理cos60º=1/2=[(a-ex)²+(a+ex)²-4c²]/2

已知点A ,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且在x轴上方,P

(1)P是椭圆与以AF为直径的圆的交点(2)先假设M坐标,求出来.在假设一个半径为r,以M为圆心的圆.圆的方程与椭圆联立,消去y,令x的方程deita为零.求出r.即为所求

已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点,

应用椭圆的第二定义:椭圆上的点到焦点的距离/到对应准线的距离=ea=3,b=√5,c=2,e=2/3,F的准线x=-9/2,设P到准线距离=d,|PF|/d=2/33/2|PF|=d,|PA|+3/2

已知F1F2是椭圆x^2/9+y^2/4=1的两个焦点,P在椭圆上,如果△PF1F2是直角三角形求点pz坐标

当PF1⊥,F1F2,那么P(-√5,0)当PF2⊥F1F2,那么P(√5,0)当PF1⊥PF2,也就是∠F1PF2=90设P(x,y),x^2/9+y^2/4=1①根据直线垂直:y/(x-√5)*y

已知F1,F2是椭圆X的平方/100+Y的平方/64=1的两个焦点,P是椭圆上一点.求PF1*PF2的最大值.

已知F₁,F₂是椭圆X²/100+Y²/64=1的两个焦点,P是椭圆上一点.求PF₁•PF₂的最大值.a=10,b=8,

已知P为椭圆x24+y2=1上任意一点,F1,F2是椭圆的两个焦点,求:

(1)|PF1|•|PF2|≤(|PF1|+|PF2|2)2=a2=4,故:|PF1|•|PF2|的最大值是4;(2)|PF1|2+|PF2|2=(|PF1|+|PF2|)2−2|PF1|•|PF2|