已知P是正方形内任一点,三角形PBC绕点B旋转到
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:57:53
证明:在三角形PAB中,PA+PB大于AB,同理得:PA+PC大于AC,PB+PC大于BC,三式相加,得:2(PA+PB+PC)大于AB+BC+AC,所以1/2(AB+BC+AC小于AP+BP+CP.
延长PF到K,使PA,PB,AK,BK组成平行四边形有PA+PB=2PF同理PB+PC=2PDPA+PC=2PE三等式相加得到2(PA+PB+PC)=2(PD+PE+PF)====>PA+PB+PC=
由塞瓦定理有,AF/FB*BD/DC*CE/EA=1所以,用反证法容易证明,AF/FB,BD/DC,CE/EA中,必有一个不小于1,又必有一个不大于1.
延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC再问:AB+AM+CM+PM>
延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC
延长BP交AC于D,AB+AC=AB+AD+DC大于BD+DC=BP+PD+DC大于BP+PC
分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应
参考答案:根据三角形两边之和大于第三边.PA+PB>ABPB+PC>BCPC+PA>AC加起来PA+PB+PC>1/2(AB+BC+AC).
设p(x,y),则x>2,y>0因为AB分别是双曲线CX^2-Y^2=4的左右顶点所以A(-2.0)B(2,0)设∠PBA=α,∠PAB=β则α为钝角,β为锐角sin(180°-α)=y/根号[(x-
证明:如图,延长BP交AC于D.∵∠BPC>∠PDC,∠PDC>∠A,∴∠BPC>∠A.
同一法.在正方形ABCD内作正三角形BCE,连AE,DE.则∠ABE=30°,BA=BE,∴∠BAE=(180°-∠ABE)/2=75°,∴∠EAD=15°,同理∠EDA=15°,又∠PAD=∠PDA
思路:先取特殊点推出四边形为矩形,再验证对于矩形,该平面内任一点P满足AP^2+CP^2=BP^2+DP^2不妨取P为AB的中点,则由AP^2+CP^2=BP^2+DP^2可得PC=PD,设CD的中点
延长BD交AC于P在三角形ABP中,AB+AP>BD+DP(1)在三角形DPC中,DP+PC>DC(2)(1)+(2)得:AB+AP+DP+PC>BD+DC+DP(消DP,其余的合并)得:AB+AC>
证明:∵△CBE是△ABP旋转所得∴△CBE≌△ABP∴BP=BE,∠ABP=∠CBE∵四边形ABCD是正方形∴∠ABC=90°∵∠ABP+∠CBP=∠ABC=90°∴∠EBP=∠CBE+∠CBP=9
过P作PE垂直AD于E,延长EP交BC于F因为ABCD是正方形,所以AD∥BC,所以PF⊥BC.因为∠PAD=∠PDA=15°所以△PAD是等腰三角形而PE⊥AD所以EF为AD的垂直平分线所以PB=P
直线x*5cosθ+y*4sinθ=16过点A(x1,y1),B(x2,y2),交x轴于M(16/(5cosθ),0),交y轴于N(0,4/sinθ),∴S△OMN=(1/2)*16/(5cosθ)*
原式可化为:(PA-PO)+(PB-PO)=(PO-PC)+(PO-PD)即OA+OB=CO+DO(1)因为四边形ABCD是平行四边形,O为中心所以向量OA=COOB=DO所以(1)式成立,所以……可
等边三角形ABC的边长为a连接PA,PB,PC三个三角形的高为x,y,z所求即为x+y+z考虑三个三角形的面积和=ax/2+ay/2+az/2=a(x+y+z)/2=(1/2)*a*a(√3)/2于是
p=(2^2-π)/2^2=0.2146
证明:过点P作EF⊥AD交AD于点E,BC于点F; 过点P作GH⊥AB交AB于点G,CD于点H.