已知sinA 根号2sinB=2sinc当角C最大时,求三角形的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:10:32
sinA+sinB=√2sinCa/sinA=b/sinB=c/sinC有:(a+b+c)/(sinA+sinB+sinC)=(a+b)/(sinA+sinB)=c/sinC所以有:(√2+1-c)/
等于1啦设A,B,C三个角对应的边为La,Lb,LcLa=(SINA*Lc)/SINC(1)Lb=(SINB*Lc)/SINC(2)所以La+Lb+Lc=(1)+(2)+Lc=根号2+1其中SINA+
A-B=(cosa-cosb,sina-sinb)|A-B|^2=(cosa-cosb)^2+(sina-sinb)^2=2-2(cosacosb+sinasinb)=4/5cosacosb+sina
3sin^2a+2sin^b=2sina2sin^2a+2sin^b=2sina-sin^2a2*(sin^2a+sin^b)=-(sina-1)^2+1-1≤sina≤1-4≤-(sina-1)^2
令cosA+cosB=x---(1)sinA+sinB=√2/2---(2)由两式平方相加的2+2cos(A-B)=x^2+1/2得-1≤cos(A-B)=x^2/2-3/4≤1可得x^2≤7/2,从
sina+sinb=-1/2,cosa+cosb=根号3/2所以(sina+sinb)²=1/4(cosa+cosb)²=3/4故(sina+sinb)²+(cosa+c
|(a-b)|=|(cosa-cosb),(sina-sinb)|=2根号5/5所以有cosa^2-2cosacosb+cosb^2+sina^2-2sinasinb+sinb^2=4/5-2(cos
(sina-sinb)^2=(1-√3/2)^2①(cosa-cosb)^2=(-0.5)^2②①+②(sina)^2+(cosa)^2+(sinb)^2+(cosb)^2-2sinsinb-2cos
由正弦定理,a:b:c=√5:√35:2√5=1:√7:2,∴cosB=(1+4-7)/4=-1/2,∴B=120°,为所求.
sina+sinb=根号2……①cosa+cosb=(根号2)/3……②①^2+②^2,得(sina)^2+(sinb)^2+2sinasinb+(cosa)^2+(cosb)^2+2cosacosb
用韦达定理可求得sina+sinb和sinasinb的值(我觉得题目错了吧,方程的根应该是sina和cosa)sin^3a+cos^3a=(sina+cosa)(sin^2a+cos^2a-sinac
由sinA/a=sinB/b=sinC/c(其中a,b,c为角A,B,C对应的三条边)设sinA/a=sinB/b=sinC/c=k则a=sinA/k,b=sinB/k,c=sinC/k带入(sinB
sin^2a=2sin^2b,cos^2a=2/3cos^2b,两式相加1=2sin^2b+2/3cos^2b,1=2(1-cos2b)/2+2/3(1+cos2b)/2cos2b=1/22b=π/3
答:sina+sinb=√2/2两边平方得:sin²a+2sinasinb+sin²b=1/2…………(1)设cosa+cosb=m两边平方得:cos²a+2cosaco
正确答案:=lzsb不用谢,也不用鼓掌,只要闷声点个赞
由题意知a=2b,a2=b2+c2-2bccosA,2b2=b2+c2-2bccosA,又c2=b2+2bc,∴cosA=22,A=45°,sinB=12,B=30°,∴C=105°.故答案为:45°
亲,我写给你,你要给我好评哦~~~再问:恩再问:答案呢再答:等下再答:再问:亲,答案有正和负再答:那是平方,忘了~”再问:亲,那个怎么变形等于1我看不懂再答:用三角函数再问:sina的平方/4+9/4
∵a,B均为锐角∴0
由正弦定理a/sinA=b/sinB=c/sinCsinA+sinB=√2sinC所以a+b=√2ca+b+c=2√2+2所以√2c+c=2√2+2所以AB=c=2a+b=√2c=2√2S=1/2ab