已知x y为正实数 3x 2y=10
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:22:50
(1)4ab+8-2b2-9ab-6=-2b2-5ab+2(2)原式=3x2y-2x2y+6xy-3x2y+xy=-2x2y+7xy,当x=-1,y=-2时,原式=-2×(-1)2(-2)+7×(-1
x2y+xy2=xy(x+y)=66,设xy=m,x+y=n,由xy+x+y=17,得到m+n=17,由xy(x+y)=66,得到mn=66,∴m=6,n=11或m=11,n=6(舍去),∴xy=m=
因为:x,y为正实数∴4x+3y=12≥24x•3y=212xy,⇒12xy≤6⇒xy≤3.(当且仅当x=32,y=2时取等号.)所以:xy的最大值为3.故答案为:3.
x+y+xy=9x+y=9-xyx^2y+xy^2=20xy(x+y)=20xy(9-xy)=20xy^2-9xy+20=0(xy-4)(xy-5)=0xy=4或xy=5x+y=5或x+y=4x^2+
由已知:xy+x+y=17,xy(x+y)=66,可知xy和x+y是方程t2-17t+66=0的两个实数根,得:t1=6,t2=11.即xy=6,x+y=11,或xy=11,x+y=6.x2+y2=(
因为A+B+C=x3-2y3+3x2y+xy2-3xy+4+y3-x3-4x2y-3xy-3xy2+3+y3+x2y+2xy2+6xy-6=1,所以,对于x、y、z的任何值A+B+C是常数.
由x+y-3xy+5=0得x+y+5=3xy.∴2xy+5≤x+y+5=3xy.∴3xy-2xy-5≥0,∴(xy+1)(3xy-5)≥0,∴xy≥53,即xy≥259,等号成立的条件是x=y.此时x
原式=2x2y+2xy-3x2y-3xy-4x2y=-5x2y-xy当x=-2,y=12时,原式=-9.
∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.
因为:x、y都是正实数所以,利用基本不等式,得:3x+4y>=2根号(3x*4y)即:1>=4根3*根号(xy)1>=48xyxy
x3+y3-x2y-xy2=(x+y)(x2-xy+y2)-xy(x+y)=(x+y)(x2-2xy+y2)=(x+y)(x2+2xy+y2-4xy)=(x+y)[(x+y)2-4xy]=10×(10
∵xy<0,由二次根式的有意义,得y>0,∴x<0,∴原式=x2y=-xy.
∵xy+x+y+7=0  
那个2是平方吧?可以用^代替原式=x^y+xy^=xy(x+y)=-3*6=-18
xy为正实数,则有2x+y>=2根号(2xy)即:xy-6>=2根号(2xy)设根号(xy)=t>0,则xy=t^2t^2-6>=2根号2tt^2-2根号2t-6>=0(t-3根号2)(t+根号2)>
方程ax^2+bx+c=0,判断这个方程有没有实数根,有几个实数根,就要用ΔΔ=b^2-4ac若Δ<0,则方程没有实数根Δ=0,则方程有两个相等实数根,也即只有一个实数根Δ>0,则方程有两个不相等的实
xy+1=4x+y①∵x>0,y>0根据均值定理∴4x+y≥2√(4x*y)=4√(xy)②①②==>xy+1≥4√(xy)∴(xy)-4√(xy)+1≥0解得√(xy)≥2+√3或0
x2y+xy2=xy*(x+y)因为x+y=-(7+xy)又x+y=(9+2xy)\3所以(9+2xy)\3=-(7+xy)3+2xy\3=-7-xy5xy\3=-10解得xy=-6所以x+y=-(7
∵x,y为正实数,且x+4y=1,∴1≥24xy,化为xy≤116,当且仅当x=4y=12时取等号.则xy的最大值为116.故选:C.
由题意得:3C=A+B=8x2y-6xy2-3xy+7xy2-2xy+5x2y=13x2y+xy2-5xy,∴C=13x2y+xy2−5xy3,故:C-A=13x2y+xy2−5xy3-(8x2y-6