已知x,y满足圆的方程x2 y2-4x-1=0,求x-y最大值和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:13:42
∵反比例函数y=-4/x的图像在第2、4象限,∴当x1<0时,y1>0当 0<x2<x3时,图象在第四象限,∴y随x的增大而增大,且y<0∴0〉y3>y2综合起来,有y2<y3<0<y1
xy/x+y=1/3x+y=3xyx2y2/x2+y2=1/5(xy)²/[(x+y)²-2xy]=1/5(xy)²/[(3xy)²-2xy]=1/5(xy)&
x2y+xy2=xy(x+y)=66,设xy=m,x+y=n,由xy+x+y=17,得到m+n=17,由xy(x+y)=66,得到mn=66,∴m=6,n=11或m=11,n=6(舍去),∴xy=m=
x2y2-20xy+x2+81=(xy-10)2+x2-19=0则xy-10=0且x2-19=0得x=+-根号19y=+-10/根号19对于像这种未知数个数多于方程类型的式子,如果能求解,只有一种情况
x3y+2x2y2+xy3=xy(x2+2xy+y2)=xy(x+y)2,∵x+y=5,∴(x+y)2=25,x2+y2+2xy=25,∵x2+y2=13,∴xy=6,∴xy(x+y)2=6×25=1
∵x+y=4,∴(x+y)2=16,∴x2+y2+2xy=16,而x2+y2=14,∴xy=1,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=14-2=12.
x,y互为倒数,m,n互为相反数x*y=1m+n=0mxy+n+x2y2=m+n+(xy)²=0+1=1
x3次方y-2x2y2+xy3=xy(x²-2xy+y²)=xy(x-y)²=3x3²=27如果本题有什么不明白可以追问,再问:=xy(x2-2xy+y2)=x
x2y2+4xy+4+x2-6x+9=0,(xy+2)2+(x-3)2=0,∵(xy+2)2≥0,(x-3)2≥0,∴xy+2=0,x-3=0,∴xy=-2,x=3.将x=3代入xy=-2中,解得y=
变形得:x2+2x+1+x2y2-2xy+1=0,∴(x+1)2+(xy-1)2=0,∴x+1=0xy−1=0,解得:x=−1y=−1,∴x+y=-2,故选B.
方程ax^2+bx+c=0,判断这个方程有没有实数根,有几个实数根,就要用ΔΔ=b^2-4ac若Δ<0,则方程没有实数根Δ=0,则方程有两个相等实数根,也即只有一个实数根Δ>0,则方程有两个不相等的实
由x²+y²-4x-10y+29=0得(x-2)²+(y-5)²=0所以x=2y=5所以x²y²+2x^3*y²+x^4*y&su
设x-y=b,是一直线方程,显然,当直线与圆相切时b可以取得最大值和最小值.x^2+(x-b)^2-4x+1=0当判别式等于0即可求出b的最值.
x+y=4,xy=2后者平方后二式相加再加后者平方
由x2+y2=2x,得y2=2x-x2≥0,∴0≤x≤2,x2y2=x2(2x-x2)=2x3-x4.设f(x)=2x3-x4(0≤x≤2),则f′(x)=6x2-4x3=2x2(3-2x),当0<x
(x-y)2=x2-2xy+y2=9,当x2+y2=13时,13-2xy=9,解得xy=2.当xy=2,x2+y2=13时,x3y-8x2y2+xy3=xy(x2-8xy+y2)=2×(13-8×2)
2-√10<x-y<2+√10(x-2)^2+y^2=5令x=2+√5cost,y=√5sint则x-y=2+√5cost-√5sint=2+√5(cost-sint)=2+√10cos(t+π/4)
x2y2+4xy+4+x2-6x+9=0,(xy+2)2+(x-3)2=0,∵(xy+2)2≥0,(x-3)2≥0,∴xy+2=0,x-3=0,∴xy=-2,x=3.将x=3代入xy=-2中,解得y=
∵x-y=l,xy=2,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2=2×1=2.
对待这样的题,先画出条件里的二次曲线,然后用与y-x=0平行的直线与所给曲线相切,然后切点就是最值点