已知xy=x-e的xy次方,求y=0时导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:02:45
-xy(x的2次方y的5次方-xy的3次方-y)=-xy²(x²y的4次方-xy²-1)=-(xy²)[(xy²)²-(xy²)-
原题目如下:-xy(x³y七次方-3x²y五次方-y)=-xy[(x³y^6)y-3(x²y^4)y-y]=-xy[(xy²)³y-3(xy
一:∵xy=e^(x+y)==>d(xy)=d(e^(x+y))(两端取微分)==>xdy+ydx=e^(x+y)(dx+dy)==>xdy+ydx=e^(x+y)dx+e^(x+y)dy==>xdy
x^2-xy=60.(1)xy-y^2=40.(2)(1)+(2)得x^2-y^2=60+40=100;(1)-(2)得X^2-2XY+Y^2=60-40=20
原式=xy(x+y)=3×5=15
x的2次方-xy=60,xy-y的2次方=40相减,得x的平方-2xy+y的平方=60-40=20
分子分母同时除以y^2,有[(x/y)^2-x/y+3]/[((x/y)^2)+x/y+6]=5/12再问:能除y的2次方么,至少也要分解好吧,不然你把详细过程写下再答:不要分解,直接同时除以y^2,
两边同时微分.e^ydy-ydx-xdy=0.变下形.答案就出来了
x^2+y^2+(xy)^2-4xy+1=0x^2-2xy+y^2+(xy)^2-2xy+1=0(x-y)^2+(xy-1)^2=0x-y=0,xy-1=0所以x-y=0,xy=1故(x-y)^200
隐函数求导,就是先左右一起求微分,加个d,然后写出多少dx+多少dy=0,移项变成dy/dx=多少的形式就好了
xy=e^x-e^yd(xy)=d(e^x-e^y)xdy+ydx=e^xdx-e^ydy(x+e^y)dy=(e^x-y)dx则由dy/dx=(e^x-y)/(e^y+x)
(x^2-2xy+y^2)+(x^2+2x+1)=0(x-y)^2+(x+1)^2=0x=-1y=-1xy=1(xy)^2006=1
再问:在问你一题再答:嗯,可以的再问:a(a+1)—(a+1)(a—1),其中a=3再答:再问:已知单项式9am+1次方bn+1次方与—2a2m次方b2n次方—1的积与—5a3次方b6的次方是同类项,
这是要立方和公式,x^3+y^3+3xy=(x+y)(x^2-xy+y^2)+3xy=x^2-xy+y^2+3xy=(x+y)^2=1
∵(x+1)²+|y-1|=0∴x+1=0,y-1=0∴x=-1,y=1∴2(xy-5xy²)-(3xy²)-(3xy²-xy)=2xy-10xy²-
y+xy'=(1+y')e^(x+y)则y'=(y-e^(x+y))/(e^(x+y)-x),dy=(y-e^(x+y)/(e^(x+y)-x)dx
对x求导y+x*y'=e^(x+y)*(1+y')y+x*y'=e^(x+y)+e^(x+y)*y'所以dy/dx=[e^(x+y)-y]/[x-e^(x+y)]
x^3+3xy+y^3=(x^3+y^3)+3xy=(x+y)(x^2-xy+y^2)+3xyx^2+y^2=(x-y)^2+2xy=9+18=27所以(x+y)(x^2-xy+y^2)+3xy=(-
原式=(x-3y)(x-4y)=0所以x=3y或x=4y所以y/x=1/3或y/x=1/4因式分解用十字相乘法,初二的应该会
x+y=0(x+2)的次方-(y+2)的次方=4(x+y+4)(x-y)^2=4(x-y)^2=1(x-y)^2=(x+y)^2-2xy=1-2xy=1xy=-1/2