已知X和Y相互独立,求U=min(X,Y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:23:54
显然不独立.如果不知道U,那么V的分布就是V自身的分布,可以取值任何数.而如果知道了U,那么V在已知U的条件下的条件分布就不是V自身的分布了,因为取值不能超过U.
U=(2X+3Y)(4Z-1)=8XZ-2X+12YZ-3YE(U)=8E(X)E(Z)-2E(X)+12E(Y)E(Z)-3E(Y)//:E(X)=0,E(Y)=0.5,E(Z)=5;//:N(5,
数学期望有:E(X)=1/4;E(Y)=1/6;E(YX)=1/8;所以有E(X)*E(Y)不等于E(XY),不独立.因为X是Y的变量,所以X,Y相关
X的概率密度函数为p(x)=1x∈(0,1)0其他Y的概率密度函数为f(x)=e^(-x)x≥00其他利用和的分布公式可知,Z的概率密度函数为g(y)=∫Rp(x)f(y-x)dx=0y≤0∫[0,y
先求x,Y的边缘分布律.如果P(X=xi,Y=yj)=P(X=xi)P(Y=yj)则相互独立.否则不独立
EW=2EX+3EXEYEZ-EZ+5=4+3*2*0.5*1.5-1.5+5=12再问:请问Ez为什么是1.5不是1···
不是相互独立的
FZ(z)=P{Z再问:可是答案是{Φ[(z+h-μ)/σ]-Φ[(z-h-μ)/σ]}/2h再答:我第一行做错了。FZ(z)=P{Z
Z=min(X,Y)f(x,y)=1*(1/2)=1/2P(Z>=z)=P(X>=z,Y>=z)最小的那个都大於z,全都大於z=∫(z~2)∫(z~1)1/2dxdy=(1-z)(2-z)/2(0
是不是以x,y建立坐标轴,借助图像y>=x确定的呢……表示不知道答案不用谢
把分布密度写出来,用卷积公式. 我算到下面这里也不会了:
...U是均匀分布,e是指数分布所以f(x)=1(0再问:貌似少了一段。。。
晕,x,y是独立的,但u,v里都有x,所以u,v就不独立了,而是相关的,于是就有相关系数.而相关系数的公式在计算的时候,就和Du,Dv有关系,而Du,Dv又和Dx,Dy有有关系,所以,……再问:不是,
E(X)=E(Y)=0,D(X)=D(Y)=4,E(X^2)=D(X)+[E(x)]^2=D(X)=4,E(Y^2)=4;E(U)=3E(X)+2E(Y)=0,E(V)=3E(X)-2E(Y)=0;D
我个人认为你的题目是不是写错了?是否是U=X+Y,V=X-即使是如此,两者独立也仅在X,Y同方差的情况下成立的样子.因为,对于正态分布来说,独立等价于不相关,也就是说二者的协方差cov(U,V)=0(
cov(U,V)=cov(x+y,x-y)=cov(x,x)-cov(x,y)+cov(y,x)-cov(y,y)变量X和Y相互独立-->cov(x,y)=cov(y,x)=0量X和Y相互同分布-->
因X与Y相互独立,所以联合密度就是两个密度相乘,f(x,y)=e^(-y),0
F(X)=0,x=再问:F(Z)=F(X+Y)=F(X)+F(Y)-F(X)F(Y)=0这一步怎么来的?还有从F(Z)怎么跳到f(Z)的?谢谢啦再答:X,Y是独立变量,P(XUY)=P(X)+P(Y)
如图(点击可放大):BTW:卷积过程就是经常要分段讨论,麻烦.再问:卷积公式的分段点怎么选择的再答:分段的原理都是一样的。中学也有分段的题目,那时怎么分段,现在就怎么分段。再问:哦