已知∠AOB=30°,p是∠AOB内一点,po=,Q.R分别是oa.ob上的动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:15:18
已知∠AOB=30°,p是∠AOB内一点,po=,Q.R分别是oa.ob上的动点
已知∠AOB=90°,OM是∠AOB的平分线,将三角形的直角顶点P在射线OM上移动,一直脚边与边OB交与点D

答:成立证明:过P作PK⊥OA于K,过P作PH⊥OB于H∴∠PHD=∠PHO=90°∠PKO=90°∴∠PHD=∠PKO∴四边形OKPH为矩形∴∠KPH=90°=∠KPC+∠HPC∵OM平分∠AOB∴

如图,∠AOB=30°,P是∠AOB内一点,OP=4cm,点C,D分别是点P关于OA,OB的对称点,连结CD,PM,PN

连接OC,OD∠POB=∠BOD,∠COA=∠AOP,∠AOP+∠POB=30°,∠COD=60°,因为,OP=OC,且,OP=OD,所以,CO=DO,所以,三角形COD是等腰三角形,且一个角是60度

如图,已知∠AOB=30°,P为∠AOB内的一点,OP=10cm,分别作出P关于OA,OB的对称点P1P2,

因为p和p1,p2对称,所以np=np2,mp=mp1,三角形周长既是求p1p2的长度连接0p2,op1,∠p2OB=∠BOP,∠POM=∠AOP1,所以∠p1op2=60°op2=op1=op=10

如图k-41-13所示,已知∠AOB=90°,OM是∠AOB的平分线,将三角板的直角定点P在射线OM上移动啊,两直角边分

过P作AO、EO的垂线,垂足为H、GOM是∠AOB的平分线=>HP=GP∠HPG=∠CPD=90°=>∠HPC=∠GPD在△HPC和△GPD中∠PHC=∠PGDHP=GP∠HPC=∠GPD=>△HPC

已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O P2三点所构成的三角形

p1p交ob与点e,p2p交oa与点g,oepg构成四边形,其中角eog是30,角peo与角pgo是90那么角就是150,所以选

已知:∠AOB=90°,OM是∠AOB的角平分线,将三角板的直角顶点P在射线QM上滑动,两直角边分别与OA,OB交于C

过P作PH⊥OA,PN⊥OB,垂足分别为H,N,∴∠HPN=90°∠CPN-∠CPH=90°∠CPN-∠DPN=90°∴∠CPH=∠DPN∴∠HPC=∠NPD.∵OM是∠AOB的平分线,∴PH=PN,

已知∠AOB=90°,OM是∠AOB的平分线,将三角形的直角顶点P在射线OM上滑动,两直角边分别与OA.OB交于C,D,

如图,作PE、PF分别⊥OA、OB(即P点到两边的距离)得PE=PF(角平分线上一点到两边的距离相等)且∠EOF=90°,又∵∠CPD=90°即相当于,绕P点将∠CPD逆时针旋转一个角度(图中90,笔

已知∠AOB=90°,OM是∠AOB的平分线,点P,C,B分别是OM,OA,OM上的点,且PC⊥PD求证PC=PD

证明:作PE⊥OB于点E,PF⊥OA于点F∵∠AOB=90°,OP是角平分线∴∠EPF=90°,PE=PF∵∠CPD=90°∴∠CPF=∠EPD∵∠CFP=∠PED=90°∴△PCF≌△PDE∴PC=

如图所示,已知∠AOB和C,D两点,求祚一点P,是PC=PD,并且P到∠AOB两边的距离相等

图有么?再问:再答:额,作CD的垂直平分线,再作角AOB的角平分线,两线的交点就是P再答:再答:konw?再答:给满意啊

已知∠AOB=30°,P在OA上且OP=3cm,点P关于直线OB的对称点是Q,那么PQ=______.

由轴对称的性质可得出OP=OQ=3cm,又因为∠AOB=30°,所以PQ=3cm.故填:3cm.

已知∠MON=45°,其内部有一点P,点P关于OM的对称是A,关于ON的对称点是B,且OP=2cm,则S△AOB=___

看到您的问题将要被新提的问题从问题列表中挤出,问题无人回答过期后会被扣分并且悬赏分也将被没收!所以我给你提几条建议:一,您可以选择在正确的分类下去提问或者到与您问题相关专业网站论坛里去看看,这样知道你

已知∠ AOB=160°,OC平分∠ AOB,OD是∠ AOB内部的一条射线,设∠ AOD=X°(X≠80°)

(1)因为OC平分∠AOB,所以∠AOC=∠BOC=1/2∠AOB=80°因为∠AOD=70°,所以角COD=∠AOC-∠AOD=10°(2)因为OC平分∠AOB,所以∠AOC=∠BOC=1/2∠AO

若角AOB=90°,它在平面a内,点P在平面a外,且PO=1,P到∠AOB两边距离都是根号3/2,那么P到a的距离是__

作PC⊥平面AOB于C,作CD⊥OA于D,CE⊥OB于E,连OC,PD,PE,则PD⊥OA,PE⊥OB,∴PD=PE=√3/2,∴CD=CE,∴∠COD=∠COE=(1/2)∠AOB=45°,OP=1

已知∠AOB为30,P为∠AOB内部的一点,点P关于OA.OB的对称点分别为P1.P2,则△P1P2是

如果问△OP1P2的话,那是等边三角形.连接OP、P1P2OP=OP1OP=OP2那么OP1=OP2OA平分∠POP1OB平分∠POP2所以∠P1OP2=2*∠AOB=60所以△P1OP2为等边三角形

已知∠AOB=90°,OM是∠AOB的平分线,点P是OM上的任意一点,点D是OB上的点连接PD,过点P做PC⊥PD,交直

第三步,题目有问题!P点是角平分线上任意一点,而D点是OB上的任意点(题目中没有任何约束),因此,P点和D点之间没有任何约束关系,所以不能求.比如,我可以选择OP=100,OD=1,也可以选择OP=1

已知p为∠AOB内一点,∠AOB=60°,P到OA,OB的距离分别是3,4 .求op的长

AB²=AP²+BP²-2AP×BP×cos120°=37sinAOB=AB/2ROP=2R=2√37/√3再问:为什么OP=2R再答:因为O、A、P、B四点共圆角A=9

已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P关于OA对称,若OP=5,则P1P2=

连接OP1,OP2,因为点P1与点P关于OB对称,点P2与点P关于OA对称,则OP1=OP,OP2=OP,所以OP1=OP2,因为∠AOB=30°,所以∠P1OP2=60°,所以AOB为短边三角形,所