已知∫f(x)dx=F(x) C,则∫sinxf(cosx)dx=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:24:09
ex(x是上标)
aF(x)+ac+F(b/a)+bc/a再问:看不懂啊
显然积分项会得到一个常数所以令C=4∫f(t)dtf(x)=e^x+C代回C=4积分(e^t+C)dtC=4[e^t+Ct]|C=4(e+C-1-0)C=4e+4C-44-4e=3CC=(4-4e)/
∫f(x)dx=xf(x)-∫xdf(x)∫f(x)dx=xf(x)-∫xdx/√(1+x^2)df(x)=dx/√(1+x^2)f(x)=∫dx/√(1+x^2)=ln|x+√(1+x^2)|+Cx
答:∫f(1/√x)dx=x^2+C对x求导得:f(1/√x)=2xf(1/√x)=2*(√x)^2所以:f(x)=2/x^2所以:∫f(x)dx=∫(2/x^2)dx=-2/x+C
∵(arcsinx)'=xf(x)=(1-x^2)^(-1/2)∴f(x)=[x(1-x^2)^1/2]^(-1)1/f(x)=x(1-x^2)^1/2∫1/f(x)dx=∫x(1-x^2)^1/2d
⑴.[x^2)*(e^x)]′=(2x+x²)e^x=xf(x).f(x)=(2+x)e^x.∫(2+x)e^xdx=……(自己算吧).⑵.令y=F(x).原题成为:y(dy/dx)=e^(
答:∫xf(x)dx=x/√(1-x²)+C两边求导得:xf(x)=1/√(1-x²)+(-x/2)*(-2x)/[(1-x²)√(1-x²)]=(1-x
第一个式子是不是有问题啊再问:已知∫f(x)dx=x+c,则∫xf(1-x)dx=再答:首先变形令u=1-x,x=1-u,∫xf(1-x)dx=∫(u-1)f(u)du=∫uf(u)du-∫uf(u)
∫x^5*f(x)dx=√(x²-1)+Cd/dx[∫x^5*f(x)dx]=x/√(x²-1)x^5*f(x)=x/√(x²-1)f(x)=x/√(x²-1)
第二个式子里面怎么有两个dx?没写错?
∵∫xf(x)dx=sinx+C∴xf(x)=(sinx)'=cosxf(x)=cosx/x
等式两边对x求导得xf(x)=3x^2*lnx+x^2∴f(x)=3xlnx+x两边积分得∫f(x)dx=3∫xlnxdx+∫xdx=(3/2)∫lnxd(x^2)+(1/2)x^2=(3/2)x^2
∫f'(tanx)dx=tanx+C两边求导得f'(tanx)=(tanx)'=sec^2x=tan^2x+1f'(x)=x^2+1两边积分得f(x)=x^3/3+x+C
∫e^(-x)f(e^(-x))dx=-∫f(e^(-x))de^(-x)令e^(-x)=u则-∫f(e^(-x))de^(-x)=-∫f(u)du=-F(u)+C将u=e^(-x)带入得-F(e^(
记sinx=t∫cosxf(sinx)dx=∫f(sinx)dsinx=∫f(t)dt=F(t)+C=F(sinx)+C
再问:我就说是这样的,网上答案都不对。再答:呵呵,毕竟,网上人士……再问:我有好多高数题想问,不妨关注我,问了你有时间回答,我给你采纳再答:没办法看到你的提问,你可以用百度hi的,把提问链接发给我就行
∫e^(-x)f(e^(-x))dx=-∫f(e^(-x))de^(-x)令e^(-x)=u则-∫f(e^(-x))de^(-x)=-∫f(u)du=-F(u)+C将u=e^(-x)带入得-F(e^(
∫f(3x+5)dx=(1/3)×∫f(3x+5)d(3x)=(1/3)×∫f(3x+5)d(3x+5)=(1/3)F(3x+5)+C