已知△abc中abacd是bc中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:02:57
利用余弦定理得:4=c2+8-42ccosA,即c2-42cosAc+4=0,∴△=32cos2A-16≥0,∵A为锐角∴A∈(0,π4],故选:C.
证明:∵BD+AD>AB,CD+AD>AC,∴BD+AD+CD+AD>AB+AC.∵AD是BC边上的中线,BD=CD,∴AD+BD>12(AB+AC).
∵ED垂直且平分AB,∴BE=AE.∵BE+CE+BC=15cm∴AE+CE+BC=15cm即AC+BC=15cm∵AC=9cm∴BC=6cm
∠BQM=60°.图B中也成立.主要是找到一对全等三角形△ABM和△BCN,就知道∠BNC=∠BMQ,就可以证明△BQM和△BNC相似,就可以推出∠BQM等于60°
延长PF到K,使PA,PB,AK,BK组成平行四边形有PA+PB=2PF同理PB+PC=2PDPA+PC=2PE三等式相加得到2(PA+PB+PC)=2(PD+PE+PF)====>PA+PB+PC=
很简单d是中点bd是5ab是13ad是12勾股定理可证再问:我知道用勾股定理证,因为我们学的是勾股定理,可是不会写证明过程。再答:证明:∵AD是△ABCBC边上的中线∴D是BC的中点BD=DC=1\2
守候丶拐弯处,证明:∵AE⊥BC,根据勾股定理可得:AB²=BE²+AE²AC²=CE²+AE²∴AB²-AC²=BE&
证明:∵点D,E,F分别是△ABC中AB,BC,CA边的中点,∴DE、DF是△ABC的中位线,∴AC=2DE,BC=2DF,∵四边形DECF是菱形,∴DE=DF,∴AC=BC.
作直径EG,连接FG;则EG=AD,∠EFG=90°∠G=∠BAC=60°,∴FG=½EG=½AD,EF=√﹙EG²-FG²﹚=√[AD²-﹙
∵CE=7AD=8∴根据三角形面积公式S△AEC=AD×CE/2∴S△AEC=8×7÷2=28又∵点E为BC中点,∴BE=CE=7△ABE的高也是AD∴S△ABE=BE×AD/2S△ABE=7×8÷2
四边形DECF是菱形所以DF=FC=CE=DE又因DF,DE为中位线所以DF=EC=1/2BCDE=FC=1/2AC所以DE=DF=1/2BC=1/2AC所以BC=AC
因为向量ab和向量bc所成的角是角abc的补角,这两个向量相乘大于零,所以夹角为锐角.所以角abc的补角为锐角,所以角abc为钝角,所以是钝角三角形.
由正弦定理BC/sinA=AC/sinB所以sinA:sinB=BC:AC=1:2所以AC=20显然BC不能作为腰(BC+AB=20=AC)所以AC为腰周长=10+20+20=50
因为DE为AB的垂直平分线所以EB=EA所以EB+EC=EA+EC=AC=9CM三角形BCE的周长=EB+EC+BC=9CM+BC=15CM所以BC=6CM
做AD⊥BC于点D,如图:∴∠ADB=∠ADC=90°.设AB=x,那么BD=x2,AB=32x,在直角三角形ADC中,可得到CD=AD=32x,∵BD+CD=BC,解得x=6-23.∴AB=6-23
∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明
半径13外心就是外接圆的圆心,把那个圆画出来,把距离表示出来,然后你就看半径r,底边一半12,距离5构成一个直角三角形.
a²(b+c)+b²(c+a)+c²(a+b)=a²b+a²c+b²c+ab²+ac²+bc²=ab(a+b)
因为DE为AB的垂直平分线所以EB=EA所以EB+EC=EA+EC=AC=9CM三角形BCE的周长=EB+EC+BC=9CM+BC=15CM所以BC=6CM