已知一垄断企业成本函数为:TC=5Q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:38:17
已知一垄断企业成本函数为:TC=5Q
《经济学》已知垄断者成本函数TC=6Q+0.05Q^2,产品需求函数Q=360-20P 求:(1)利益最大的销售价格,产

垄断价格P下的利润为f(P)=PQ-TC=P(360-20P)-6(360-20P)-0.05(360-20P)^2=-40(P^2-30P+216)令f'(P)=0,得2P-30=0,于是利益最大的

已知某垄断厂商生产的一种产品,在两个市场上出售,其成本函数为TC=Q2+40Q,两个市场的需求函数分别为Q1=12-0.

MC=TC'=2Q+40P1=120-10Q1MR1=120-20Q1MR=MC120-20Q1=2Q1+40Q1=80/22=3.6P1=120-36=84P2=50-2.5Q2MR2=50-5Q2

已知一家垄断企业函数为:TC=5Q^2+20Q+1000,产品的需求函数为:Q=140-P,利润最大化时的产量、价格分别

Mc=dtc,mr=140-2p所以,mc=10q+20,mc=1420-10p利润最大化时,mc=mr.带入求出p,与d即可

某垄断厂商的产品需求函数为P = 1760-12Q,成本函数为TC =1/3Q^3-15Q^2+5Q+24000

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

已知某垄断竞争厂商的短期成本函数为TC=0.6Q*Q+3Q+2

好的反需求函数为P=8-0.4Q.求该厂商实现利润最大化时的产量、法1;maxπ=P*Q-C(收益减成本)maxπ=(8-0.4Q)*Q-(0.6Q^2+3Q+5)=8Q-0.4Q^2-0.6Q^2-

已知某企业的成本函数为:TC = 200 + 5Q - .4Q2 + .001Q3,求:A.求固定成本 B.求平均可变成

TC=200+5Q-.4Q2+.001Q3是不是TC=200+5Q-0.4Q^2+0.001Q^3或者是写错了,因为在计算平均可变成本最小点时,出现负值,这个是微观经济学的题吧.计算过程:固定成本为2

已知垄断者的成本函数TC=……,产品的需求函数为Q=……求:(2)如政

MC=TC'=8+0.1QP=20-Q/20MR=20-0.1QMR=MC8+0.1Q=20-0.1QQ=60,P=17利润π=PQ-TC=60*17-8*60-0.05*60^2=360

2.假定一个垄断者的产品寻需求曲线为:P=50-3Q,成本函数为TC=2Q,求垄断企业利润最大时的产量、价格和利

边际成本MC=成本(TC)’Q=2,(条件MR=MC)总收益TR=P*Q=(50-3Q)*QMR=(TR)’Q=50-6Q=2得Q=8(产量)价格P=50-3Q=50-3*8=26利润π=P*q-TC

假设一个垄断厂商面临的需求函数为P=10-3Q,成本函数为TC=Q2+2Q.

解.依题可得MR=10-6Q;MC=TC'=2Q+2利润最大时有MR=MC即10-6Q=2Q+2解得Q=1P=10-3=7利润=PQ-TC=1*7-(1+2)=4

已知某垄断者的成本函数为TC=8Q+0.05Q2,产品的需求函数为Q=400-20P,求:(1)垄

MC=TC'=8+0.1QP=20-Q/20MR=20-0.1QMR=MC8+0.1Q=20-0.1QQ=60P=17利润π=PQ-TC=60*17-8*60-0.05*60^2=360再问:可不可以

已知垄断企业的成本函数是TC=6Q+0.05Q2,产品需求函数是Q=360-20P,求如果政府试图对垄断企业采取规定产量

若政府试图对垄断企业采取规定,使其达到完全竞争的产量水平,及边际成本定价法因此P=MC6+0.1Q=18-0.05QQ=80P=14TC=480+0.05*6400=600利润=TR-TC=1120-

已知某垄断厂商的成本函数为TC=0.6Q2+3Q+2,反需求函数为P=8-0.4Q.

(1)由题意可得:MC=且MR=8-0.8Q于是,根据利润最大化原则MR=MC有:8-0.8Q=1.2Q+3解得Q=2.5以Q=2.5代入反需求函数P=8-0.4Q,得:P=8-0.4×2.5=7以Q

1、已知某垄断竞争厂商的产品总需求函数为P=9400-4Q,成本函数为TC=4000+3000Q ,Q为产量.求

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

已知某企业的成本函数为TC = 20Q + 10,产品的市场需求函数是Q = 140- P,试求出

1.固定成本=10;变动成本=20Q.2.销售收入=PQ=140Q-Q^2;利润=销售收入-成本=PQ-TC=-Q^2+120Q+10.3.利润最大化=MAX(-Q^2+120Q+10),对利润求导,

一垄断厂商成本函数为:TC=5Q(Q+4)+10,产品的需求函数为:Q=140-P.

联立两个方程,把需求函数带入总成本函数里.得一个二元一次方程,再求导.

设某完全垄断企业的市场需求函数和成本函数分别为,TC=Q^2+8Q如果能将消费者分隔成两个市场,需求函数分别

MC=2Q+8Q=Q1+Q2=12-0.2P+12.5-0.1P=24.5-0.3PP=245/3-10/3*QMR=245/3-20/3*QMR=MC245/3-20/3*Q=2Q+8Q=8.5P=

已知某垄断厂商的成本函数为TC=0.6Q^2+3Q+2,需求函数为Q=20-2.5P ,求:

垄断厂商的利润最大化,π=p(q)*q-c(q)p=8-2/5q代入上式π=(8-2/5q)*q-0.6q^2-3q-2就一阶导数为0得出q然后根据这个数字,你就可以求得其他的因素,价格收益最大化TR