已知三个整数abc成等差数列,且a b,b c,c a成等比数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:16:07
2B=A+CA-C=60A+B+C=1803B=180B=60A+C=120A-C=602A=180A=90C=30cosA^2+cos^2B+cos^2C=0+1/4+3/4=1
2B=A+CA+B+C=180B=90三角边abc的倒数这句话看不懂再问:打落了一句是三条边abc的倒数也成等差数列
(1)三个角成等差数列设A
由题意,∵△ABC的三个内角A、B、C成等差数列∴B=60°∴S=12ac×sinB=33故答案为33
A+B+C=1802B=A+C所以B=60
三个内角A.B.C成等差数列,B=60但A的大小是不确定的只能确定取值范围0
容易知道B为60度,A-C=派\3,所以A为90度,C为30度,cos^2A+cos^2B+cos^2C=0+1/4+3/4=1
1,因为三边是整数,所以由面积公式S=abSIN(C)/2,知必有一个为60度或120度,而120不可能使A,B,C成等差,所以知必有一角为60度.不妨设这个角就是C,代回之前的面积公式可得:a*b=
A+B+C=180°,2B=A+C=180°-B,则B=60°;则由余弦定理可知:cosB=(a²+c²-b²)/(2ac)=cos60°=1/2即(a²+c&
三个内角成等差数列所以B=60°cosC=根号6/3sin^2C+cos^2C=1sinC=根号3/3用正弦定理b/sinB=c/sinC可得c=根号2
因为A,B,C等差所以A+B+C=3B=180则B=60由a,b,c等比,可设a=b/q,c=bq其中q>0则有1/2=cosB=(a^2+c^2-b^2)/(2ac)代入化简可得q^2+1/q^2=
A,B,C成等差数列所以2B=A+C又A+B+C=180°易求得A+C=120°sinA-sinC+(√2/2)cos(A-C)=√2/22sin[(A-C)/2]cos[(A+C)/2]+(√2/2
x,y,z成等差数列所以x+y+z=3y.又x+y+z∈(40,45),y是整数所以y=14.x+z=2y=28.x+y,y+z,z+x成等比数列就说明(14+z)^2=(14+x)*28.由此可见2
等差数列的性质知道A+C=2B所以B=60如果没猜错的话,原式应该是sinA-sinC+√2[cos(A-C)]/2=√2/2移项得sinA-sinC=√2/2*[1-cos(A-C)]左边用和差化积
设x-a,x,x+ax-a+x+x+a=1803x=180x=60°所以其中一项是60°
60度因为角A+角B+角C=180又因为是等差数列所以2B=A+C则3B=180B=60
A+C=2B,A+B+C=180°,则B=60°AD为BC上的中线,则BD=BC/2=2,AB=1.∠B=60°根据鱼余弦定理,得AD²=BD²+AB²-2AB*BDco
由等差数列有2B=A+C,由等比可得b^2=ac,正弦定理得出Sin^2(B)=SinA*SinC,又因为Sin^2(B)=(1-Cos2B)/2,代入,则1-Cos2B=2SinA*SinC,然后第
三角形ABC的三个内角A,B,C成等差数列则A+C=2B因为A+B+C=180°3B=180°所以B=60°A+C=120°(sinA)^2+(sinC)^2=(sinA+sinC)^2-2sinAs
首先角B=60°sin²B=3/4=3sinAsinCsinAsin(120-A)=1/4化简得√3/2sinAcosA+1/2sin²A=1/4√3/4sin2A-1/4cos2