已知三角ABC是等边三角形,点P.Q分别是边AB.BC上的动点,且PA=QB,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:28:19
∠BQM=60°.图B中也成立.主要是找到一对全等三角形△ABM和△BCN,就知道∠BNC=∠BMQ,就可以证明△BQM和△BNC相似,就可以推出∠BQM等于60°
1)连AD,等边三角形ABC面积=4√3,等边三角形ABC面积=三角形ABD面积+三角形ACD面积=(1/2)AB*DE+(1/2)AC*DF=2DE+2DF=2√3+2DF=4√3,所以DF=√32
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
这个题条件不够是不是有D、f是BC、AB的中点或AF=BD
已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=
1.因为AD=BE=CF所以AF=DB=CE因为三角形ABC是等边三角形所以角A=角B=角C三角形ADF全等于三角形BDE全等于三角形CEF所以DF=DE=EF所以三角形DEF是等边三角形再问:那等你
因为BD=CE,△ABC为正△所以AB=AC,∠A=60°所以AD=AE,∠A=60°所以△ADE正三角形
证明:∵在两个正三角形中∠BCD=∠ACE=60°-∠DCABC=ACDC=EC∴△BCD≌△ACE(SAS)∴∠EAC=∠B=60°∴∠EAC=∠ACB∴AE‖BC(内错角相等,两直线平行)
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
证明因为三角形ABC是等边三角形所以角A=角B=角C=60度因为DE平行BC所以角ADE=角ABC=60度(两直线平行,同位角相等)角AED=角ACB=60度(两直线平行,同位角相等)得角A=角ADE
证明:如图所示∵△ADE是等边三角形∴∠ADE=60°又∵△ABC是等边三角形∴∠BAC=60°又∵AD是△ABC的中线∴∠DAC=30°=∠DAF∴∠AFD=90°∴AC⊥DE∵△ADE是等边三角形
答:∵△ABC是等边三角形∴∠A=∠B=∠C∵AD=BE=CF,即AF=CE=BD∴△ADF≌△BED≌△CFE(边角边)∴在△DEF中DE=EF=FD所以△DEF为等边三角形(边边边)
证明:因为三角形ABC和三角形ADE是等边三角形所以AB=AC角B=角BAC=角BAE+角CAE=60度AE=AD角DAE=角CAE+角DAC=60度所以角BAE=角CAD所以三角形BAE和三角形CA
△DEF为等边三角形证明:∵三角形ABC为等边三角形∴AB=AC=BC,∠C=∠B=∠A又∵AD=BE=CF∴AF=CE=BD在△ADF和△FCE和△BED中AF=CE=BD∠C=∠B=∠AAD=BE
1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.
答案等于三分之二根号三
第一题:1.第二题:30度或150度.