已知三角形ABC,点D.F分别为线段AC.AB上两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:16:51
根据三角形中位线定理,DF=1/2AC,DE=1/2AB,在直角三角形AHC中,HE是斜边中线,HE=1/2AC,同理,FH=1/2AB,DF=HE,DE=FH,FE是公共边三角形DEF全等于三角形H
证明:过点C作CG∥AB交DF于G∵CG∥AB∴△AED∽△CEG,△CFG∽△BFD∴CG/AD=CE/AE,CG/BD=CF/BF∵AD=BD∴CG/AD=CG/BD∴CE/AE=CF/BF∴CF
在一个三角形ABC中,有一个内三角形PDE.AB是底边,点P在AB边上,点D在AC边上,点E在BC边上.在某个特殊的位置上,三角形PDE有一个最小值周长.求:当三角形PDE的周长是最小值时,点P处于A
证法一:假设BE与CD可互相平分则可证三角形DEF全等与三角形CBF,三角形BFD全等于三角形EFC所以BD=EC,DE=BC又BD=CE时明显可得DE小于BC矛盾所以BE,CD不能互相平分证法二:假
BE+CF>EF证明:延长FD到点G,使DG=DF,连接BG∵BD=CD,FD=DG,∠BDG=∠CDF∴△BDG≌△CDF∴BG=CF∵ED⊥FG∴EF=EG在△ABG中,BE+BG>EG∵BG=C
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
∵三角形ABC中,已知点D,E,F分别为AB,AC,BC的中点,S⊿ABC=4厘米²,∴S⊿DEF=S⊿ABC÷4=1
(1)AB=AC,AE=CD,∠BAE=∠ACD=60,∴△ABE≌△CAD(SAS).(2)△ABE≌△CAD,∠EAF=∠ABE,∠AFE=∠FBA+∠BAF∠AFE=∠FAB+∠EAF=∠BAE
连接ADS△BDC:S△CDE=7:7=1:1BD=DES△BDF:S△BDC=3:7FD:CD=3:7设S△ADF=x.S△ADE=yS△ABD:S△ADE=BD:DE=1:1x+3):y=1:1y
⑴根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA,结合AE=CD,可证明△ABE≌△CAD,从而证得结论;⑵根据∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠
证明:∵AH⊥BC,E为AC中点∴EH=1/2AC∵D为BC中点.E为AB中点∴DF=1/2AC∴DF=EH同理HF=DE∵FE=FE∴△EFH≌△FED
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
反证法不妨设∠A∠B∠C中∠A最大,则BC大于其它两边(大边对大角),所以EC>BD和AF,所以∠CFE在对应的3个角中最大,所以∠C在对应的三个角中最小因为∠A在对应的三个角中最大,所以∠AFD在对
角2=角ABC+角BAC角BAC=角1+角AEF所以角2>角BAC>角1
S△BEC=S△ABC/2=2S△BEF=S△BEC/2=1再问:请写出具体过程,谢谢再答:作EG⊥BC于G,AH⊥BC于H,BL⊥CF延长线于L∵AD=2DE,EG∥AH∴AH=2EG(平行线间性质
∵AD=3BD∴AB=AD+DB=3BD+BD=4BD又DE//BC从而∠ADE=∠ABC,∠AED=∠ACB∴三角形ADE∽三角形ABC(两个角对应相等的两个三角形相似)从而S△ADE:S△ABC=
因为ADE相似ABC,所以AD比AB等于AE比AC(相似比)又因为AEF相似ADC,所以AE比AC等于AD比AF,则AD比AB等于AD比AF.化简得,AD方等于AF乘AB再问:??
在△ABC中∵BC=1,AB=2,CA=√3∴∠ACB=90°,且∠ABC=60°设△DEF的边长为x由sinα=(2/7)√7,可得cosα=√(3/7)在Rt△FEC中可得CF=[√(3/7)]x