已知三角形ABC中,AD是中线E为AB上一点,EF平行于BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:26:10
已知三角形ABC中,AD是中线E为AB上一点,EF平行于BC
已知,如图在三角形abc中,点D在bc边上,BE//CF,且be=cf.是说明ad是三角形abc的中线

∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.

已知如图,三角形ABC中角B=2角C,BC=2AB,AD是中线

因为BC=2AB,AD是中线所以AB=BD又因为角B=2角C所以AD=DC,即AB=AD所以三角形ABD是等边三角形

一初二数学题目------“在三角形ABC中,AD是BC边上的中线.求:AD

延长AD到E,使得DE=AD,连接BE则易知三角形BDE全等于三角形CDA.因此BE=AC在三角形ABE中,AE

如图,已知三角形ABC中,AB大于AC,AD是中线,AE是角平分线

⑴可延长AD到F,使DF=AD,在△ABF中,由三边关系即可得出结论;⑵由△ADC≌△FDB,得∠CAD=∠F,在△ABF中,由边的大小关系即可得出角之间的关系;⑶同⑵,由角的关系亦可求解边的大小./

如图所示,在三角形ABC中,AD为BC边上的中线,是说明AD

延长AD至E,使AD=DE.ABD全等CDE,ADC全等BDE,所以ABEC是平行四边形.AE=2AD

在三角形ABC中,AD是BC的中线.证明AB+AC>2AD

延长AD到点E,使DE=AD,连接DE易证三角形ADC与三角形BDE全等(SAS)则AC=BE在三角形ABE中,AB+BE>AE所以AB+AC>2AD

已知:如图,AD,AE分别是三角形ABC和三角形ABD的中线.

∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠

在三角形abc中,ad是边bc的中线,证明:ab+ac>2ad

中线倍长法延长AD至E使DE=AD,连接EB在三角形ADC与三角形EDB中,CD=BD,AD=ED,∠ADC=∠EDB所以三角形ADC≌三角形EAB(SAS)所以AC=EB,在三角形EBA中,AB+B

、如图在三角形ABC中,AD是中线,

延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13

三角形ABC中,AD是角BAC的角平分线,AD是BC边上中线.求证:三角形ABC是等腰三角形

如图,延长AD到F,使DF=AD,连接CF,在△ABD和△CFD中,∠ADB=∠CDF,BD=CD,AD=FD∴△ABD≌△FCD∴∠BAD=∠F,AB=CF∵∠BAD=∠CAD∴∠CAD=∠F∴AC

已知三角形ABC中,AB大于AC,AD是BC边上的中线.求证:角BAD小于角DAC.

将ad延长到I使得:AD=DI.连接CI很容易看出三角形ADB全等于IDC,所以角BAD等于角DIC.又因为AB大于AC,所以BC大于AC.所以角DAC大于DIC,既角BAD小于DAC证明玩了.

已知三角形ABC中,AB=13,BC=10,中线AD=12,求证三角形ABC是等腰三角形.

证明:△ABD中,因为AB的平方=AD的平方+BD的平方=169,所以△ABD是Rt△.则AD垂直于BC,△ACD也是Rt△.所以AC的平方=AD的平方+CD的平方=169因此AB=AC即△ABC是等

已知三角形abc中,ab=ac,ad是bc边上的中线.

(1)因为AB=AC所以三角形ABC是以BC为底的等腰三角形因为AD是BC边上的中线所以角BAO=角CAO因为AB=AC,AO=AO所以三角形BAO全等三角形CAO所以OB=OC因为AB的垂直平分线交

在三角形abc中,已知ab等于2011,ac等于2009,ad是三角形abc的一条中线,则三角形abd与三角形acd的周

ad是三角形abc的一条中线bd=cd三角形abd与三角形acd的周长之差=ab+ad+bd-ad-cd-ac=ab+bd-cd-ac=ab-ac=2

在直角三角形ABC 中,AD是斜边BC的中线,已知AB/AD=根号3,且AC=4,求三角形ABC面积

BD=CD=ADAB=根号3ADBC=2ADBC*BC=AC*AC+AB*AB4AD*AD=16+3AD*ADAD=4AB*AB+AC*AC=BC*BCAB=4根号3S=1/2AB*AC=1/2*4*

已知AD是三角形ABC的中线,求证三角形一边的中线长度小于另外两边长度和的一半

证明:延长AD到E,使DE=DA,连接BE.又BD=CD,∠BDE=∠CDA.∴⊿BDE≌⊿CDA(SAS),BE=AC.∵AE