已知三角形ABC中,∠C=90°,3cosB=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:26:30
已知三角形ABC中,∠C=90°,3cosB=2
在三角形ABC中,已知c=2a cosB,怎么判断三角形ABC的形状

化为c/a=2cosB又c/a=sinC/sinA所以sinC=2sinAcosB因为A+B+C=180sinC=sin(A+B)=sinAcosB+sinBcosA于是sinAcosB=sinBco

在三角形ABC中,已知b.cosC=c.cosB判断三角形ABC的形状

由正弦定理,b/sinB=c/sinC得b=sinB·c/sinC代入原式得cosC·sinB·c/sinC=c·cosBsinB·cosC=sinC·cosBsinB·cosC-sinC·cosB=

在三角形ABC中,已知a+b=8,∠C=60度,求三角形ABC面积的最大值,三角形ABC周长的最小值

有正弦定理得S=根3/4*ab.由a+b=8可得ab小于等于16(基本不等式).所以Smax=4根3.由余弦定理可得c的最小值为4.所以周长最小值为12.没分加?

已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B

这图只有几粒米大.也无法放大.重新上传大一点图,亲

如图所示,已知三角形ABC中,∠B=∠C,AB=AC=10C

解题思路:同学你好,题没有写完整,请在下面补充解题过程:..最终答案:略

已知在三角形ABC中,∠C=90 °,∠CBA=60°,b+c=12,求△ABC的面积

sinB=sin60°=√3/2(b:c)因为b+c=12,所以,b=12-c,b/c=√3/2所以12-c/c=√3/2解出得c=24/(√3+2)=48-24√3,所以b=24√3+36,a=24

在Rt三角形abc中,∠C=90°,已知sinA=sinB,试求∠A的读数

因为SINA=SINB,所以角A=角B因为角C等于90度所以角A加角B等于90度,又因为角A等于角B,所以,角A=45度

在三角形ABC中,已知a+b=8,∠C=60度,求三角形ABC周长的最小值

你忘记开根号了用余弦定理求出c边为√(3X的平方-24X+64)周长C的代数式√(3X的平方-24X+64)外面+8只要算前面2次函数的最低点即刻知道周长最小的时候多少化简公式得3乘以(X-4)的平方

已知,在三角形ABC中,∠C=90°,CD是斜边AB上的高求证:三角形ACD相似三角形ABC

因为∠A+∠B=90°,∠DCA+∠A=90°,所以∠B=∠DCA,三角相等,所以△ACD相似于△ACB

已知Rt三角形ABC中,∠C=90,AC=4cm,BC=3cm.先将三角形ABC进行折叠,使顶点A、B

你好像还打差,原提是不是这样的:“已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A,B重合,则折痕DE=()cm”如果是的话,应该这样根据题意所得DE是AB

已知三角形AbC中,角A=90度,c=10,a+b=12,求S三角形ABC

听好了...咳咳...设a=xb=12-x10²+(12-x)²=x²100+144-24x+x²=x²244=24xx=61/6a=61/6b=12

在三角形ABC中,D是BC中点,已知∠BAD+∠C=90度,试判断三角形ABC的形状

直角三角形,A是直角再问:步骤再答:我写错了,是等腰三角形,抱歉

在三角形ABC中,已知b=asinC,c=acosB,则三角形一定是什么三角形

等腰直角三角形显然sinC≤1,cosB≤1,所以b≤a,c≤a由a/sinA=b/sinB=c/sinC得sinB=sinAsinC,sinC=sinAcosB,所以(sinB)^2=(sinAsi

已知在RT△ABC中∠c=90°若a+b=13、c-9求三角形ABC 的面积

S=ab/2=[(a+b)^2-(a^2+b^2)]/4=[(a+b)^2-c^2}/4=[13^2-9^2]/4=22*4/4=22

已知:在rt△ABC与RT△ABC'中 ∠C=∠C'=90 CD C'D'分别是两个三角形斜边上的高

证明:∵在Rt△ACD和Rt△A'C‘D’中,CD/C'D'=AC/A'C'∴△ADC∽△A'D'C'又∵∠ACB=∠A'C'B'∴△ABC∽△A'B'C'得证

已知在Rt三角形ABC中,∠C=90°,a:b=3:4,且Rt三角形ABC的周长为60,求三边的长

1、a:b=3:4设a=3x,b=4x则c=√(a²+b²)=5x所以周长=3x+4x+5x=60x=5所以a=15,b=20,c=252、面积是BC*AC/2=30所以AC=5c

已知:在三角形ABC中,角C=90度,CD是斜边AB上的高.求证:三角形ACD相似于三角形CBD相似于三角形ABC

角A=角A=角DCB,角ACB=角ADC=角BDC,三角形ACD和ABC相似,三角形ACD和CBD相似,三角形ACD相似于三角形CBD相似于三角形ABC