已知三角形ABC为正三角形,P是任意一点,求证:PA小于等于PB PC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:48:30
#includemain(){floatP=0;/*定义一个浮点型变量P,代表周长*/printf("输入正三角形的周长");scanf("%f",&P);floatS=(1.732/2)*(P/3)
连接AP、BP、CP,设等边三角形的高为h,如图:∵正三角形ABC边长为2∴h=22−12=3∵S△BPC=12BC•PDS△APC=12AC•PES△APB=12AB•PF∴S△ABC=12BC•P
把△ABP绕点B顺时针旋转60°得到△BCQ,连接PQ,∵∠PBQ=60°,BP=BQ,∴△BPQ是等边三角形,∴PQ=PB=4,而PC=5,CQ=4,在△PQC中,PQ2+QC2=PC2,∴△PQC
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
几年级的作业,这么难?记录下来,关注中...------------------------------------------按原题作图:以B为中心,按60度旋转△BAP,使得A点旋转至C点,P点至
以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 
作AG垂直于BC,交BC于G,设AB=a,BC=b,CA=c,根据海伦公式S=根号下(P(P-a)(P-b)(P-c))S三角形BCE+S三角形ACF=((根号3)/4)*b^2+((根号3)/4)*
这是奥赛的题?如此说来可以取巧,取巧如下:由于P是任意点,不妨设其为正三角形的中心点,则由题意可知PE、PF、PG分别垂直于三角形的三条边.由正三角形的各种性质,再画个图,可以清楚地看到这三个小三角形
是斜二侧画法吧A'B'C'的高为√3/2a则顶点到原点的距离为√6/2aABC的高就为√6a高之比为2√2面积比也为ABC面积就是2√2ABC的面积为2√2×√3/4a^3=√6/2a^3
h1+h2+h3=h.证明:连接PA、PB、PC,则三角形ABC被划分成三个三角形PAB、PBC、PCA,设三角形边长为a,则SABC=1/2*ah,而SPAB+SPBC+SPCA=1/2*ah1+1
答案是a先延长DP,EP,FP假设FP的延长线交BC与G因为ABC是正三角形,且PD‖AB,PE‖BC,PF‖AC所以,PF=BD,PD=DG,PE=GCPD+PE+PE=BD+DG+DC=BC=a
设正△ABC,顶点A,作AH⊥BC,垂足H,AH=√3a/2,底边B、H、C三点不变,从H作与BC夹角为45度的射线,截HA1=AH/2=√3a/4,连结BA1、CA1即为直观图,在直观图中,作A1H
由已知得原三角形底边是a,该边上的高是√6a∴面积=√6a²/2
平面直观图的坐标系夹角为45°,y的长度为原长度的1/2.正三角形从一个角作对边的垂线,以该边为x轴,以垂足斜45°为y轴那么可以求出顶点的坐标是(-根号3,根号6)那么可以知道原来顶点坐标是(-根号
8个,说明...简单说吧,你想象一下在每个顶点处都以顶点为球心,以1为半径,作球,然后求这三个球的公切面有几个.
AD=BD+DC才对!SAS全等即可!
根号3面积法连接PAPBPC利用△ABC的面积=△PAB的面积+△PBC的面积+△PAC的面积最后得到结论P点到三边距离之和等于△ABC的高
由等差数列有2B=A+C,由等比可得b^2=ac,正弦定理得出Sin^2(B)=SinA*SinC,又因为Sin^2(B)=(1-Cos2B)/2,代入,则1-Cos2B=2SinA*SinC,然后第
由“正弦定理”得:2R=2/sin60º===>R=2√3/3.
正三角形中心为O,半径r.a/sin60=2rr=a/2sin60=a/根号3设∠PAB=m∠PAO=m+30PA=2rcos∠PAO=2acos(m+30)/根号3S三角形PAC+S三角形PAB=P