已知三角形ABC内切于圆O,角OBC=35°,则角A的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:44:03
设ABD=X,BF=Y,CE=Z∵圆O内切于三角形ABC∴AE=AD=X,BD=BF=Y,CF=CE=Z∵AD+BD=AB=10,AE+CE=AC=10,BF+CF=BC=6∴X+Y=10,X+Z=1
解:AB+AC=20-BC=13.设圆O与BC切于F.由切线长定理知:AD=AE,BD=BF,CE=CF.∴(AB+AC)-BC=(AD+BD+AE+CE)-(BF+CF)=AD+AE.即13-7=A
连接OD、OE、OF、OA、OB、OC∴OD⊥AB、OE⊥BC、OF⊥AC由已知得S△ABC=1/2AB*BC*sin∠B=15√3/4而S△ABC=S△ABO+S△BOC+S△AOC=1/2AB*r
我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~
关于如图,三角形ABC内接于圆O
1.画一个圆0,随意再画一个内角为60度的内接三角形.连接AO并延长与圆相交于D,连接DC,则DC垂直于AC,根据同弧所对的圆周角相等,角ADC=角B=60度,因为AC=12,所以AO=8根号3,O到
再答:亲,满意请采纳,谢谢,不懂可追问。再问:已知30度的直角三角形是短边=第三边的1/2,但Sin、Cos、tan还没学,亲!再答:那就用这个定理:30度所对的边是邻边的一半。然后剩下一边用勾股定理
根据勾股定理可得AB=5△ABC的内切圆半径为r=(3+4-5)/2=1所以内切圆面积=π因为△ABC的面积=1/2*3*4=6所以所求面积为6-π
(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2
6-π再问:过程啊。。。。。。。。。。。。再答:先求小圆的面积,(3+4+5)*半径=3*4/2半径为1三角形面积减圆面积就是上面的
∵∠BAC=120°且AB=AC=6且此三角形为正三角形∵△ABC内接于圆O∴连接AO∴AO⊥且平分BC∴AO=OC=BC∴BC=2*OC=2*6=12都参加工作好几年了,
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线
因为sinB=1/2,所以角B=30度,角AOC=60度(圆心角是圆周角的一倍),又,点D在OC的廴长线上,角D=30度所以,在三角形OAD中,角OAD=90度,即:AD是圆O的切线同时圆心角AOC=
用正弦定理AC/sin30度=2RR为半径,R=2
直线AD与圆O相切.证明:连接AO并延长交圆O于E,连接CE.AE为直径,则:∠ACE=90°,∠CAE+∠E=90°.∵∠E=∠ABC;∠CAD=∠ABC.∴∠CAD=∠E,故∠CAE+∠CAD=9
1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边再问:为什么剩下15度再答:60-
因为角BOC=120度所以角BAC=60度因为AB=AC,角BAC=60度所以角ABC=角BAC=角ACB=60度弧AB=弧AC=弧BC=120度