已知三角形abc和和bce均为等腰直角三角形,角bad=角bce
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:03:51
∵S△EFC=S△AEF∴△EFC与△AEF高相等∵EF∥BC∵△AEF∽△ACB∴S△AEF=4S△ACB=0.25∴S△EFC=S△EFB=S△AEF=0.25再问:为什么S△EFC=S△AEF?
结论:AE=BD∵△ACD和△BCE都是等腰直角三角形∴AC=CD,BC=CD∵∠ACD=∠BCE=90°∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB∴△ACE≌△DCB∴AE=BD
此题其实是为了一个重要性质而出:三角形两个内角的两条外角平分线与第三个内角的内角平分线交于一点!过F分别作FM⊥AB于M,FN⊥AC于N,FP⊥BC于P∴∠BMF=∠BPF=90°BF平分∠DBC,∴
利用三角形的全等即可证明.DC=AC∠DCB=∠ACEBC=EC△DBC≌△AEC(SAS)所以可证BD=AE
(1)利用三角形的全等即可证明.DC=AC∠DCB=∠ACEBC=EC△DBC≌△AEC(SAS)所以可证AE=BD(2)证明:∵⊿ACD和⊿BCE都是等边三角形∴AC=DC,BC=EC,∠ACD=∠
相等,因为三角形ACD与三角形BCE都是等腰三角形,并且顶角相等,那么他们的角相对应的都一样大.三角形ABC全等于三角形DEC,那么有角ACB=角DCE,而角ACD=角ACB+角BCD,角BCE=角D
相等如图角ACB=DCE都加上一个角CBD还是相等的不知道图是不是这个
/>∵D是AB中点,DE⊥AB∴EA=EB∵AE+EC=AC∴BE+EC=AC∵△BCE的周长=8∴AC+BC=8∵AC-BC=2∴AC=5,BC=3
∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).
(1)在△ABE和△DBC中,有DB=AB,BE=BC(等边三角形),∠ABE=∠DBC=120°∴△ABE≌△DBC(SAS0∴AE=CD(2)因题意,∠MBN=60°(180°-60°-60°)又
证明:因为∠1=∠2,∠3=∠4所以△ABD∽△CBE所以AB/CB=BD/BE所以AB/BD=BC/BE因为∠1=∠2所以∠1+∠CBD=∠2+∠CBD即∠ABC=∠DBE所以△ABC∽△DBE所以
过点P作PO1垂直BD于点O1过点P作PO2垂直CE于点O2过点P作PO3垂直BC于点O3由BP是角CBD的平分线,得PO1=PO3由CP是角BCE的平分线,得PO2=PO3所以,PO1=PO2故AP
BC与DE平行.证明如下:在△DBE和△ABC中,DB=AB,∠DBE=∠ABE+∠ABD=∠ABE+60°=∠ABE+∠CBE=∠ABC,BE=BC,所以,△DBE≌△ABC,可得:∠DEB=∠AC
也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°再问:十分感谢再答:可以推荐一下我吗?再问:太给力了,你的回答完美解决
过A作AM‖FC交BC于M,连结DM、EM.因为∠ACB=60°,∠CAF=60°,所以∠ACB=∠CAF.所以AF‖MC.所以四边形AMCF是平行四边形.又因为FA=FC,所以□AMCF是菱形.所以
证明:过点P作PH⊥BC于H,PM⊥AD于M,PN⊥AE于N∵AP平分∠BAC,PM⊥AD,PN⊥AE∴PM=PN∵BP平分∠CBD,PM⊥AD,PH⊥BC∴PM=PH∴PH=PN∴PC平分∠BCE
∵∠ABD=∠CBE=60°,∴∠ABE=∠DBC=120°,又∵AB=DB,EB=CB,∴△ABE≌△DBC(SAS)∴∠BAE=∠BDN,又∵AB=DB,∠ABM=∠DBN=60°,∴△ABM≌△
图太小……再问:图片点击两下就变大了再答:作FH⊥BC于H,由BF平分∠DBC知DF=FH由CF平分∠CBE知FH=FE所以DF=FE由角平分线逆定理知AF是∠DAE的平分线证明完毕!
∵∠CBE=∠ABD,∠BCE=∠BAD ∴△CBE∽△ABD ∴BC/AB=BE/BD,AB×BE=BC×
也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°