已知三角形bad和三角形bce均为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:45:00
已知三角形bad和三角形bce均为
如图,已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD,说明三角形BCE全等于三角形DCF

已知AC平分角BAD,所以角ACB=角ACD;又因为:CE垂直AB于E,CF垂直AD于F,所以角ACE=角ACF,CE=CF所以角ECB=角FCD所以三角形BCE全等于三角形DCF

如图,在平行四边形ABCD中,角BAD=32度.分别以BC,CD为边向外作三角形BCE和三角形DCF,使BE=BC,D.

(1)求证:△ABE≌△FDA证明:∵四边形ABCD是平行四边形∴AB=CD,∠ABC=∠ADC∵DF=DC∴AB=DF同理:EB=AD又∵∠EBC=∠CDF∴∠ABE=∠ADF∴△ABE≌△FDA(

如图,三角形ABC和三角形BCE都是等腰直角三角形,∠ACD=∠BCE=90度

结论:AE=BD∵△ACD和△BCE都是等腰直角三角形∴AC=CD,BC=CD∵∠ACD=∠BCE=90°∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB∴△ACE≌△DCB∴AE=BD

如图,已知点D在三角形ABC内,点E在三角形ABC外,且角BAD=角BCE,角ABD=角CBE,求ACXBE=BCXDE

证明:因为∠BAD=∠BCE,∠ABD=∠CBE,所以△ABD∽△CBE,所以AB/CB=BD/BE,又∠ABD=∠CBE,所以∠ABD+∠DBC=∠CBE+∠DBC,即:∠ABC=∠DBE,所以△A

如图,已知三角形ABC的外角∠CBD和∠BCE的平分线相交于点F,AF⊥DE,求证:△ADE是等腰三角形.

此题其实是为了一个重要性质而出:三角形两个内角的两条外角平分线与第三个内角的内角平分线交于一点!过F分别作FM⊥AB于M,FN⊥AC于N,FP⊥BC于P∴∠BMF=∠BPF=90°BF平分∠DBC,∴

如图,已知三角形ABC,以AC和BC为边向外作正三角形ACD和正三角形BCE,BD与AE相交于点M. 求证:A

(1)利用三角形的全等即可证明.DC=AC∠DCB=∠ACEBC=EC△DBC≌△AEC(SAS)所以可证AE=BD(2)证明:∵⊿ACD和⊿BCE都是等边三角形∴AC=DC,BC=EC,∠ACD=∠

已知三角形ABC全等于三角形DEC,CA和CD,CB和CE是对应边,求角ACD和角BCE相等吗?

相等,因为三角形ACD与三角形BCE都是等腰三角形,并且顶角相等,那么他们的角相对应的都一样大.三角形ABC全等于三角形DEC,那么有角ACB=角DCE,而角ACD=角ACB+角BCD,角BCE=角D

已知:四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分∠BAD.证明三角形ABC相似三角形bCE

∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).

图中的直角梯形中,已知梯形的上底是6cm,下底是9cm,高8cm,三角形ABF、三角形BCE和四边形BEDF面积相等.

梯形面积=(6+9)*8/2=60cm²S△ABF=S△BCE=S四边形BEDF=60/3=20cm²S△BCE=CE*6/2所以CE=20/3cm则DE=8-20/3=4/3cm

已知点P是三角形ABC的外角CBD和BCE的平分线的交点,试说明AP平分角BAC

过点P作PO1垂直BD于点O1过点P作PO2垂直CE于点O2过点P作PO3垂直BC于点O3由BP是角CBD的平分线,得PO1=PO3由CP是角BCE的平分线,得PO2=PO3所以,PO1=PO2故AP

如图,已知△ABC和△BDE都是等边三角形,联结AD,CE,问△BAD与△BCE是否全等?为什么 ∠BAD与∠BCE是否

△ABC是等边三角形,AB=BC∠BAD=60+∠BDC,∠BCE=60+∠BDC,所以∠BAD=∠BCE△BDE是等边三角形,BE=BD所以△BAD和△BCE有两条边和一个角相等,(边角边),所以全

如图所示,已知三角形abc和三角形bde均为等边三角形连接ad、ce,若角bad等于三十九度,那么角bce等于

也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°再问:十分感谢再答:可以推荐一下我吗?再问:太给力了,你的回答完美解决

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

如图所示,已知在三角形ABC中,角A的角平分线和外角角CBD的平分线相交于点P求证,PC平分角BCE

证明:过点P作PH⊥BC于H,PM⊥AD于M,PN⊥AE于N∵AP平分∠BAC,PM⊥AD,PN⊥AE∴PM=PN∵BP平分∠CBD,PM⊥AD,PH⊥BC∴PM=PH∴PH=PN∴PC平分∠BCE

已知,A,B,C三点在同一直线上,三角形ABC和三角形BCE都是等边三角形,AE交BD于M,CD交BE于N

∵∠ABD=∠CBE=60°,∴∠ABE=∠DBC=120°,又∵AB=DB,EB=CB,∴△ABE≌△DBC(SAS)∴∠BAE=∠BDN,又∵AB=DB,∠ABM=∠DBN=60°,∴△ABM≌△

已知角abd=角cbe,角bad=角bce,求三角形abc相似三角形dbe

角abd=角cbe,角bad=角bce,得三角形ABD∽三角形CBE.故角ABD=角CBE,BA/BD=BC/BE.则角ABC=角DBC,得三角形abc相似三角形dbe.

已知D为三角形ABC内一点,连接ED、AD,以BC为边在三角形ABC外作角CBE=角ABD,角BCE=角BAD.

∵∠CBE=∠ABD,∠BCE=∠BAD    ∴△CBE∽△ABD    ∴BC/AB=BE/BD,AB×BE=BC×

如图,D是三角形ABC内的一点,在三角形ABC外取一点E,使角CBE=角BAD,角BCE=角BAD,证明△ABC∽△DB

根据已知条件:角CBE=角ABD,角BCE=角BAD可以判定△ABD∽△CBD,所以AB:BD=CB:BE且∠ABD=∠CBE;而∠ABC=∠ABC+∠DBC;∠DBE=∠CBE+∠DBC,故∠ABC

如图 已知点B在线段AE上 三角形ABC和三角形BDE均为等边三角形 连接AD CE 若角BAD=39° 那么角BCE等

也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°