已知三阶矩阵A的三个特征值分别为3,3,-3 则A 6A-6E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:05:40
已知三阶矩阵A的三个特征值分别为3,3,-3 则A 6A-6E
已知三阶矩阵A的特征值为-1,2,3,则(2A) ^(-1)的特征值为?

设λ是A的特征值,那么有:Ax=λx两边同乘2:2Ax=2λx两边同左乘2A的逆:x=2λ[(2A)^(-1)]x整理一下:[(2A)^(-1)]x=[1/(2λ)]x即1/(2λ)是(2A)^(-1

已知三阶矩阵A的三个特征值分别为1,2,-3,则|-4A^-1-A*|等于多少?请问这个题怎么做,麻烦说下过程,

方阵的行列式就等于其所有特征值的连乘积,所以|A|=1*2*(-3)=-6而由公式AA*=|A|E可以知道,A*=|A|A^(-1)=-6A^(-1)于是|-4A^(-1)-A*|=|2A^(-1)|

线性代数问题,已知三阶矩阵A的特征值为-1,1,,则行列式

已知三阶矩阵A的特征值为-1,1,二分一,则行列式(A的负1次方+2I)的值是?我来给楼主答案:A的特征值为-1,1,1/2;则A^(-1)+2I的特征值为1,3,4;所以A^(-1)+2I的行列式=

已知三阶矩阵A的特征值为-1,1,2,则 B=A^3-2A^2的特征值是?|B|=?

记g(x)=x^3-2x^2因为A的特征值为-1,1,2所以B=g(A)=A^3-2A^2的特征值为g(-1)=-3,g(1)=-1,g(2)=0,所以|B|=(-3)*(-1)*0=0.

已知三阶矩阵A的特征值为1,2,—3,求|A*—3A+2E|

A*=|A|A逆A*α=|A|A逆αAα=λαA逆Aα=λA逆αα=λA逆α(|A|/λ)α=A*α故A*的特征值为|A|/λ|A|=1*2*(-3)=-6所以A*的特征值为-6/1,-6/2,-6/

已知3阶矩阵A的特征值分别为1,2,3,|E+A|等于多少.

矩阵的对应行列式的值等于特征值的积.矩阵E+A的特征值为1+1、2+1、3+1,即2,3,4所以|E+A|=2*3*4=24.

已知三阶矩阵A的特征值为 -1,1,2,矩阵B=A-3A^2.试求B的特征值和detB.

因为B=A-3A^2所以2E+B=(E-A0(2E+3A)4E+B=(E+A)(4E-3A)10E+B=(2E-A)(5E+3A)又A的特征值为:-1,1,2所以det(2E+B)=0det(4E+B

三阶矩阵A的特征值为2,1,1,则矩阵B=(A*)^2+I的特征值为?

|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:

已知三阶矩阵A的特征值为1,-2,3,则(2A)、 A^(-1)的特征值为?

|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式

A为三阶矩阵,E为三阶单位矩阵A的三个特征值分别为1,2,-3,则下列矩阵中是可逆矩阵的是:A.A-E B.A+E C.

若要A+aE可逆,只需|A+aE|≠0,即a不是-A的特征值,亦即-a不是A的特征值.因此a≠-1,-2,3即可.观察选项,只有A+E可逆,选B.

一个三阶矩阵A的特征值分别为-2,-3,4.那么A* -5I 的行列式是多少?

IAI=(-2)*(-3)*4=24A*的特征值为(-1/2)*24=-12 (-1/3)*24=-8  24/4=6A* -5I 的特征值为-12-

已知三阶矩阵A的特征值为1,-1,2则行列式|A^2-2A+A*|=_____

这个答案是15吧我用两个方法算出来都是一个结果的啊刘老师算错了吧

已知三阶矩阵的特征向量和特征值

不要,那样就麻烦了!由(1)得b=k1a1+k2a2+k3a3两边左乘A得Ab=k1Aa1+k2Aa2+k3Aa3=k1a1+2k2a2+3k3a3同样的道理再两边左乘A得A^2b=k1Aa1+2k2

已知三阶矩阵A的特征值为1,2,—3,求A*—3A+2E的特征值

λa=1,2,-3|A|=1*2*(-3)=-6λ(A*)=λa/|A|λ(A*)=-6.-3.2λ(A*—3A+2E)=-7..-7.13再问:?再答:是特征值啊再问:你这证明过程我看不懂啊再答:定

已知三阶矩阵A的特征值为1,2,3,求E+A+2A^2+3A^3的特征值

你每次带入的特征值不一样,这是不对的.不同特征值对应的特征向量是不一样的也就是说当AB=B成立时,A^2C=4C成立,B与C是不相等的所以求特征值,应该是1+1+2*1+3*1=71+2+2*4+3*

已知三阶矩阵 的三个特征值为1,-1,2,则A^2+2A+3E 的特征值为 .

A^2+2A+3E的特征值为1.1²+2+3=62.(-1)²-2+3=1-2+3=23.2²+2×2+3=4+4+3=11即特征值为:6,2,11.再问:E呢?为什么用

已知三阶可逆矩阵的特征值为1,3,4,求B=A+A2的特征值

先告诉你一个定理吧:若x是A的特征值,则f(x)是f(A)的特征值.(其中f(x)是x的多项式,f(A)矩阵A的多项式)那么你的问题答案就显而易见了,f(x)=x+x^2;所以B的特征值为飞f(1)、

已知三阶矩阵A的三个特征值为1,-2,3,则|A|=?A^-1的特征值为?A^T的特征值为?A*的特征值为?

|A|=1*(-2)*3=-6A^-1的特征值为1,-1/2,1/3A^T的特征值与A的特征值相同:1,-2,3A*的特征值为:|A|/λ:-6,3,-2

已知三阶矩阵A特征值为1 2 -3

对于矩阵函数f(A)来说,矩阵A有特征值a,那么f(A)就有特征值f(a)所以在这里,A有特征值1,2,-1那么B=f(A)=A^3-2A^2-A+2E那么特征值分别为f(1)=1-2-1+2=0f(