已知两个定点A,B的距离为6,动点M满足
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:26:20
以AB的中点为原点,AB的中垂线为Y轴建立平面直角坐标系O-XY.则A(-3,0),B(3,0)令M(x,y)则向量MA=(-3-x,-y),向量MB=(3-x,-y)又向量MA*2向量MB=-1所以
选取适当的坐标轴,使A点的坐标(-a,0),B点的坐标(a,0)根据题意有,M到A的距离是M到B的距离的2倍,所以M到A的距离的平方是M到B的距离的平方的4倍(x+a)^2+y^2=4[(x-a)^2
以AB所在直线为长轴,以A、B两点为焦点的椭圆再问:我们还没教到椭圆呢。再答:我告诉你,这肯定是老师给你们预习作业,你们下一节课肯定就学椭圆了,很有意思,好好学吧,其实椭圆部分,包括后面双曲线、抛物线
以AB所在直线与其中垂线建立直角坐标系,则A(-1,0),B(1,0),设该点为C(x,y),则(x+1)²+y²-(x-1)²-y²=1则可得x=1/4所以所
1.取AB的中点为坐标原点,A,B都在X轴上,动点P的坐标设为(X,Y).|PA|^2-|PB|^2=1,或|PB|^2-|PA|^2=1.(X+1)^2+Y^2-[(X-1)^2+Y^2]=1,或(
设曲线上任意一点的坐标为p(x,y)(AP)^2/(BP)^2=[(X+4)^2+Y^2]/[(X-2)^2+Y^2]=4整理得x^2-8x+y^2=0
建立坐标系如图所示,设|AB|=2a,则A(-a,0),B(a,0).设M(x,y)是轨迹上任意一点.则由题设,得|MA||MB|=λ,坐标代入,得(x+a)2+y2(x−a)2+y2=λ,化简得(1
以AB所在直线为X轴,AB中点为原点,建立坐标系.则A坐标(-3,0),B(3,0)设动点P坐标(x,y)PA:PB=2:1,即PA=2PB即(x+3)^2+y^2=4[(x-3)^2+y^2]x^2
此曲线是椭圆,且2a=4即a=2,c=√3,所以b²=a²-c²=1.其方程是x²/4+y²=1.设:P(n,m),M(x1,y1)、N(x2,y2)
1.如图,当PQ=PA+3PB⊥EF时.|PQ|=a+3b最小.不难计算,此时tanα=4b/|EF|.由此可以得到P的求法.DF=4b,PB‖DE即可.
以直线AB为x轴,AB中点为原点建立平面直角坐标系,设点P坐标(x,y),然后用两点距离公式表示出AP、BP的距离(带xy的),然后距离比2:1…………我算了一下结果是x^2+y^2-10x+9=0
自己选择坐标系的话A在(-3,0)B在(3,0)它们的中垂线就是x=0,也就是y轴
以ab为x轴a为原点x=3为垂直平分线的方程
以AB中点为原点,AB直线为x轴则:A(-3,0),B(3,0),设M(x,y)MA=(x3,y),MB=(x-3,y)MA��2MB=2(x3)(x-3)2y^2=2x^2-182y^2=-1x^2
以AB的中点为原点,AB的中垂线为Y轴建立平面直角坐标系O-X-Y.则A(-3,0),B(3,0)令M(x,y)则向量MA=(-3-x,-y),向量MB=(3-x,-y)又向量MA*向量MB=-1所以
连结AB,取线段AB中点设为原点O,以AB所在直线为x轴,线段AB的中垂线为y轴建立平面直角坐标系,则易得点A坐标为(-a,0),点B坐标为(a,0)设点M坐标为(x,y),则由两点间的距离公式得:|
设曲线上的任意点为(x,y).据题意有[(x-1)^2+y^2]/[(x-4)^2+y^2]=1/2知,(x,y)不为(4,0)和(1,0)化简方程,得(x+2)^2+y^2=18很明显(4,0)和(
画个坐标,A(0,0),B(6,0),假设M(x,y),角MAB为atana=y/x,tan2a=y/(6-x),且x不等于0、6,y不等于0由tan(2α)=2tanα/(1-tan²α)
楼主题目似乎有一点问题:http://zhidao.baidu.com/question/126866800.html?si=1不知道是不是同一道题目、^_^……