已知中心在坐标原点,焦点在x轴上离心率根号6 3且过点根号5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:02:22
已知中心在坐标原点,焦点在x轴上离心率根号6 3且过点根号5
已知中心在坐标原点,焦点在x轴上的椭圆C,其长轴等于4,离心率为2分之根号2,

1>2a=4,a=2,c/a=e=根号2/2,c=根号2.b平方=平方-平方=,标准方程为x平方/4-y平方/2=1.2>假设存在直线l:y=kx+m与椭圆C交于M,N两点,使向量MN的模等于向量NE

已知中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍的椭圆经过点M=(2.1)求椭圆方程

1、设椭圆的长轴为a,则短轴为a/2,焦点在x轴上椭圆方程可表示为x^2/a^2+y^2/(a/2)^2=1把(2,1)代入椭圆方程4/a^2+1/(a^2/4)=14/a^2+4/a^2=1a^2=

已知中心在坐标原点 焦点在x轴上的一椭圆

椭圆的一个焦点将长轴分成两段的比例中项等于椭圆的焦距.即:c^2=(a-c)x(a+c)c^2=a^2-c^2a^2=2c^2=2(a^2-b^2)=2a^2-2b^2所以,a^2=2b^2设方程是:

已知中心在坐标原点,焦点在x轴上的椭圆C,其长轴等于4,离心率为2分之根号2

a=2e^2=(c/a)^2=1/2b^2=a^2--c^2=a^2(1--1/2)=2标准方程:x^2/4+y^2/2=1顶点(2,0)(-2,0)(0,根2)(0,--根2)(2)k为任意实数:证

已知中心在坐标原点,焦点F1、F2在x轴上的椭圆C的离心率为2分之根号3,

第一题抛物线x^2=4y2p=4p=2所以焦点坐标(0,1)因为焦点坐标在y轴上,且焦点是椭圆c的一个顶点所以b=1离心率e=2分之根号3,所以c/a=2分之根号3,设c为2分之根号3x,设a为2xb

已知双曲线C的中心在坐标原点,焦点在X轴上离心率e=根号2,焦点到渐近线的距离为1

解;e=c/a=根2,焦点(c,0),渐近线;x/a+-y/b=0(c/a+0/b)/根(1/a^2+1/b^2)=1a^2+b^2=c^2c^2=2a^2b^2=a^2=c^2/2a^2=b^2=1

求助)已知椭圆的中心在坐标原点,焦点在 x 轴上,以其两个焦点和短轴的两个端点 .

设左右焦点为F1、F2,上顶点为A,正方形边长=2,|AF1|=|AF2|=2,|F1F2|=2√2,c=√2,则C、D是椭圆的左右焦点,C是F1,D是F2,根据椭圆定义,|AF1|+|AF2|=2+

已知椭圆的中心在坐标原点,焦点在x轴,椭圆焦距为4,且离心率为更号2分之2,求椭圆标准方程

再问:�����ܲ�������ۿۣ�再答:����ĸ��Ұ��ҵ����������˾ܼ�再答:�����qq������再问:����Ұɣ�1428169783�������ע��ѧ������再

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.

不难!基础题!先根据最远,最近距离,求出a,b,c的值!写出椭圆方程,与直线联立!得到一元二次方程,其二根之和的一半,在x轴,c处!建立等式!得到k与m的关系,带回直线就得到了,一定过得点了!

已知双曲线的中心在坐标原点,焦点在x轴上,实轴长为2倍根号三.渐近线方程为y=±3

1.a=√3b/a=√3/3b=1双曲线方程为x²/3-y²=12.c=2设x²/a²+y²/b²=1,所以a²=b²+

已知椭圆c的中心在坐标原点焦点在x轴上,且过点p(√3,1/2)

分析:(1)设椭圆C的方程为利用所给条件列出方程组,解出即可;     (2)易判断直线l不存在斜率时不合题意,当直线存在斜率时,设直线l的方程为y=

已知双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别在左右焦点,双曲线的右支上有一点P,

由双曲线焦点三角形的面积公式:S△F1PF2=b²/tan(∠F1PF2/2)=b²/tan30°=√3b²得:√3b²=2√3得:b²=2c/a=2

已知双曲线的中心在坐标原点、焦点在x轴上,实轴长二倍根号三,渐进线方程为y等于正负3分之根号3x.

实轴=2根号下3所以a=2根号下3渐近线方程:y=±根号下3x/3=±bx/a所以b/a=根号下3/3b=2所以c=根号下(a²+b²)=4a²=12b²=4焦

已知双曲线的中心在坐标原点,焦点在x轴上,且一条渐近线为直线3x+y=0

整理直线方程得y=-3x∴ba=3,即b=3a∴c=b2+a2=2a∴e=ca=2故答案为:2.

已知椭圆C的中心在原点,焦点在x轴上,离心率e=1/2,一个顶点的坐标为(0,根号3)

解:设椭圆方程为x^2/a`^2+y^2/b^2=1,则b=√3,a`=2,由向量AM*AN=0知,AM垂直于AN,那么M、N两点一定位于x轴两侧,假设M点位于X轴下方,坐标为(x1,y1)N点位于X

已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,

∵椭圆的短轴端点和焦点所组成的四边形为正方形,∴a=√2c∵两准线间的距离为1,∴2a²/c=1===>2(√2c)²/c=1===>c=1/4∴a=√2/4===>b²

已知椭圆中心在原点 焦点在x轴 他与x+y+1=0

令a=2k,有离心率c/a=二分之跟3,知c=根号3k,得b=k所以椭圆方程为X*2+4Y*2=4K*2(1)再设p(x1,y1)q(x2,y2)因为PO垂直于QO所以向量OP点乘向量OQ的值等于0即

已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=0.25x^2的焦点,

*?这个是什么哎?o..抛物线是Y=2PX.知道y=0.25x^2.可以求得P=1/8.因为P=2C求得C=1/16.知道离心率.离心率公式是:E=C/A.求得A知道A知道C.用A平方=B平方+C平方

已知中心在坐标原点,焦点都在x轴上的双曲线M,离心率e为2,左顶点与右焦点的距离为6

e=c/a=2又左焦点到右顶点的距离=a+c=6,可得c=2,a=1,所以M的方程为X^2-(Y^2)/3=1.由题可知,圆心在直线X=1/2上,令圆心的纵坐标为y,半径为r,圆心到直线x+y=5的距

已知中心在原点,焦点在x轴上的椭圆的左、右焦点坐标分别为F1(-2,0),F2(2,0)

依椭圆性质易知(a+c)(a-c)=b^2=5且c^2=4所以a^2=b^2+c^2=9所以椭圆的标准方程为x^2/9+y^2/5=1