已知二次函数Y=-X2 8X-12

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 04:15:58
已知二次函数Y=-X2 8X-12
已知二次函数y=x2-x+m.

(1)二次函数y=x2-x+m=(x-12)2-14+m∵a>0,∴抛物线开口向上,对称轴为x=12,顶点坐标为(12,-14+m).(2)由已知,即-14+m>0,解得m>14,(3)∵二次函数y=

已知二次函数y=x2+ax+a-2.

(1)令y=0,则x²+ax+(a-2)=0△=a²-4(a-2)=a²-4a+8=(a-2)²+4>0∴x²+ax+(a-2)=0总有两个实数根,即

已知二次函数y=x2+ax+a-2

设2根为:x1,x2;由已知得:|x1-x2|=√13由二次函数解析式得:x1+x2=-a;x1*x2=a-2(这是根据韦达定理)所以有,(x1-x2)^2=13=(x1+x2)^2-4x1*x2=a

已知二次函数y=(m-1)x

∵y=(m-1)xm2−3m+2是二次函数,∴m2-3m+2=2得m=0或3,又∵图象的开口向上,∴m-1>0,即m>1,∴m=3.

已知二次函数y=2x²+x-3

①该函数图象与x轴有几个交点?并求出交点坐标;有两个交点2x²+x-3=0(2x+3)(x-1)=0x=-3/2或x=1交点坐标是(-3/2,0),(1,0)②该说明一元二次方程2x

已知二次函数y=x2-6x+8

(1)把x=0代入y=x2-6x+8得y=8,所以抛物线与y轴的交点坐标为(0,8),把y=0代入y=x2-6x+8得x2-6x+8=0,解得x1=2,x2=4,所以抛物线与x轴的交点坐标为(2,0)

已知二次函数y=x2+4x.

(1)∵y=x2+4x=(x2+4x+4)-4=(x+2)2-4,∴对称轴为:x=-2,顶点坐标:(-2,-4);(2)y=0时,有x2+4x=0,x(x+4)=0,∴x1=0,x2=-4.∴图象与x

已知二次函数y=12

依题意有12c2+bc+c=−2b=−3,解得b=−3c=2则二次函数的解析式为y=12x2-3x+2.

已知已知二次函数y=x²-(2m+1)x+m²-1

(1)由题意可知m-1=0解得m=1,m=-1,当m=1时,y=x-3x,二次函数与x轴另一交点的坐标为(3,0);当m=-1时,y=x+x,二次函数与x轴另一交点的坐标为(-1,0).(2)已知抛物

已知二次函数y=14

∵二次函数的a=14>0,∴二次函数的图象开口向上,∴顶点的函数值最小,即当x=−b2a=5时,y最小=4ac−b24a=−14,∵二次函数的开口向上,且对称轴为x=−b2a=5,∵当x<5时,y随x

已知二次函数y=x²-x-2 (1)画出此函数的图象

(2)如图,当y=0时,x1=-1,x2=2∴方程的解是x1=-1,x2=2 (3)当x<-1或x>2时,y>0 

数学二次函数 已知二次函数y=x²+ax+a-2

1、判别式b^2-4ac=a^2-4(a-2)=a^2-4a+8由题可知,我们要证a^2-4a+8>0成立即,a^2-4a+8的对称轴为-b/2a=2,在对称轴上最低点为(2,4)最低点都为正,那么整

已知:二次函数y=ax2+bx的图像所示.(1)若二次函数的对称轴方程为x=1求二次函数的解析式;

图呢?是不是这样的图已知,二次函数y=ax2+bx的图象如图所示.(1)若二次函数的对称轴方程为x=1,求二次函数的解析式;(2)已知一次函数y=kx+n,点P(m,0)是x轴上的一个动点.若在(1)

已知二次函数图象的顶点在原点o对称轴为y轴,一次函数Y=KX+1的图象与二次函数的图

有两种情况!当K为0时直线与曲线相离,此时直线即为Y=0;当K为非0实数时,为相切且有两个交点!但没有一个交点的时候,因为一个交点只有在K不存在时才成立,而题设条件有K就说明没有K不存在这种情况!明白

已知二次函数y=x^2-4x+1求函数最小值

我在做再问:嗯再答:这个简单啊再问:求帮忙再答:好的再答:2

已知二次函数y=34

由已知条件得−b2×34=134×22+2b+c=−94,解得b=-32,c=-94,故此二次函数的解析式为y=34x2-32x-94.

已知二次函数y=12x2-3x+1

(1)∵y=12x2-3x+1=12(x2-6x)+1=12(x-3)2-72,∴把它的图象向右平移1个单位,向下平移3个单位得到的函数的解析式为:y=12(x-3-1)2-72-3,即y=12(x-

已知二次函数y=x2+bx+c,当y<0时,x<-1或x>3,则二次函数y=

当y<0时,x<-1或x>3,所以当x=-1或x=3时,y=0,所以y=(x+1)(x-3)=x^2-2x-3