已知以f为焦点的抛物线y 2 4x 若向量AF=2FB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:02:18
已知以f为焦点的抛物线y 2 4x 若向量AF=2FB
已知抛物线的焦点为F(1,0).1.求抛物线的标准方程.

(1)、焦点坐标为(p/2,0),——》p/2=1,即p=2,——》抛物线的标准方程为:y^2=2px=4x;(2)、设l的方程为:y=2x+b,|AB|=3v5=v[(xa-xb)^2+(ya-yb

(本小题满分14分)已知椭圆 的左右焦点为 ,抛物线C: 以F 2 为焦点且与椭圆相交于点M 、N ,直线 与抛物线C相

(Ⅰ)由椭圆方程得半焦距        …………1分所以椭圆焦点为    &nb

已知抛物线y^2=2px的焦点为F,过F得直线L与抛物线交与A,B两点 求证以AB为直径的圆必与抛物线的准线相切

AB中点MMx=(Ax+Bx)/2作MN垂直准线x=-p/2于NMN=Mx+p/2AB=AF+BF=(Ax+p/2)+(Bx+p/2)=(Ax+Bx+p)/2AM=BM=MNMN是圆M半径,准线是切线

已知椭圆C1的左右焦点分别为F1,F2,抛物线C2以F1为顶点,以F2为焦点,

设P到椭圆左准线的距离为D,则|PF1|=eD又因为|PF1|=e|PF2|,所以|PF2|=D,即椭圆和抛物线的准线重合,而抛物线C2以F1为顶点,以F2为焦点所以椭圆的焦准距等于抛物线焦准距的一半

已知抛物线C的方程y^2=4x,F为抛物线的焦点,顶点在原点上

y^2=4x,抛物线的焦点F(1,0)设圆心为(a,b),半径为r圆与x轴相切,那么r=|b|,圆与抛物线准线x=-1相切,则a+1=|b|又b^2=4a∴(a+1)^2=b^2=4a解得a=1,b=

已知抛物线方程的焦点再y轴上抛物线上一点M(a,-4)到焦点F的距离为5求抛物线和a值

抛物线方程的焦点再y轴上,设抛物线方程为:x^2=2py准线为:y=-p/2M(a,-4)到焦点F的距离为5,根据抛物线定义:|-4+p/2|=5解得:p=-2或18又因为点M纵坐标为

已知抛物线C:x^2=4y的焦点为F,点P为抛物线下方的一点,

(1):→P(1,-2)y`=x/2,设A(m,m²/4),B(n,n²/4)在A点切线斜率k1=m/2在B点切线斜率k2=n/2PA直线斜率:k1=(m²/4+2)/(

已知抛物线y^2=4x的焦点为F 准线为l

纯粹的体力活儿啊!首先,抛物线的方程可以写成(x2)^2=2p(y-b).且限制条件为p<1/2.由

已知抛物线y^2=4x的焦点为F,过焦点F的直线交于抛物线于A,B两点,且A在第一象限,

(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y

已知抛物线的焦点为F

解题思路:(1)知识点:两点间距离公式(2)知识点:抛物线的定义解题过程:FJ1

已知F1,F2为椭圆的左、右焦点,抛物线C以F1为顶点,F2为焦点,设P为椭圆和抛物线的一个交点,且

F1(-c,0)、F2(c,0),抛物线顶点F1、焦点F2,则准线x=-3c.又PF1:P到椭圆左准线的距离=e=[PF1]:[PF2],所以P到椭圆左准线的距离=PF2,即椭圆的左准线就是抛物线的准

已知抛物线的顶点在坐标原点,焦点F在X轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足

根据题意,抛物线可表达为y²=2px,p>0F(p/2,0),准线x=-p/2设A(a²/(2p),a),B(b²/(2p),b),C(c²/(2p),c)按抛

已知P(4,-1),F为抛物线y^2=8x的焦点,M为抛物线上的点

过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即

.已知抛物线y的平方=4x 的焦点为 f,

焦点为(1,0),则直线不与x轴垂直的直线设为y=√3(x-1),直线与x轴垂直的直线设为x=1,把问题补全再问:已知抛物线y的平方=4x的焦点为f过f作斜率为√3的直线与抛物线在x轴上方的部分交于m

已知抛物线y^2=4x的焦点为F 准线为l

哈哈,这种题估计只要大学读的非数学非物理专业的,哪怕高中数学再牛也答不出来了!

已知抛物线Y=1/2X,O为坐标原点;F为抛物线的焦点.求OF的值

Y=1/2X是一条直线.如果方程是Y^2=1/2X.那么F坐标(1/8,0)|OF|=1/8.

已知M是抛物线y^2=4x上的一点,且在x轴上方,F是抛物线的焦点,以Fx为始边,FM为终边的角xFM=60度,则F..

在抛物线y²=4x中,p=2.过点M作MN⊥准线于N,过F作FH⊥MN于H.则:HN=p=2,因∠xFM=60°,则:MH=(1/2)MF,又:MF=MNMF=MH+HNMF=(1/2)MF

已知抛物线C的顶点在原点,焦点为F(0,1)

(2)|MN|最小,因直线斜率固定为1,只要确定M、N两点坐标差最小即可;因为M在l2,设其坐标为(m,m-2),则OM的方程为y=[(m-2)/m]*x;上式带入抛物线方程求A(Xa,Ya)坐标:x

抛物线焦点弦问题已知抛物线的中点为原点,P大于0,焦点为F,过焦点的直线交抛物线于A、B两点,A、B两点在抛物线准线上的

不妨设抛物线方程为y^2=2px,直线AB过焦点(p/2,0),可设为:x=ky+p/2联立可得y^2-2kpy-p^2=0,设A(y1^2/(2p),y1),B(y2^2/(2p),y2),则B1(