已知关于x的一元二次方程 (m-2)的平方x平方 (2m 1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:14:21
已知关于x的一元二次方程 (m-2)的平方x平方 (2m 1)
已知关于x的一元二次方程x²+3x+m=0

(1)关于x的一元二次方程x²+3x+m=0有两个不相等的实数根的条件是△=3²-4×1×m>0得到m<9/4(2)设x1,x2是(1)中所得的两个根,由求根公式有:x1=[-3-

已知关于x的一元二次方程x2-(m-1)x+m+2=0,

(1)∵△=b2-4ac=(m-1)2-4×(m+2)=m2-6m-7,又∵方程有两个相等的实数根,∴m2-6m-7=0,解得m1=-1,m2=7;(2)由题意可知,m+2=m2-9m+2,解得m1=

已知关于x的一元二次方程x的平方+(m+3)x+m+1=0

http://zhidao.baidu.com/question/583189708.html

已知关于x的一元二次方程x^2+(2m-1)x+m^2=0

x1x2=m²=1;m=±1;(2)x1+x2=1-2m;x1x2=m²;(x1-x2)²=(x1+x2)²-4x1x2=(1-2m)²-4m

已知关于x的一元二次方程x2+(m+3)x+m+1=0

一元二次方程x2+(m+3)x+m+1=0的两个根x1,x2.(x1-x2)^2=(m+3)^2-4(m+1)=m^2+2m+5=(m+1)^2+4,仅有m+1=0,才能满足(m+1)^2+4也是平方

已知关于x的一元二次方程 x²+4x+m-1=0.

x²+4x+m-1=0当Δ>0时,方程有两个不相等的实根.Δ=b²-4ac=4²-4x1x(m-1)=16-4m+4=20-4m20-4m>04m再问:Δ是什么?再答:Δ

已知关于x的一元二次方程 mx^-(3m-1)x+2m-1=0

判别式=[-(3m-1)]^2-4m(2m-1)=1(3m-1)^2-4m(2m-1)-1=09m^2-6m+1-8m^2+4m-1=0m^2-2m=0m(m-2)=0所以m=2或m=0(舍去,因为一

已知关于x的一元二次方程x²+2x+m=0

(1)当m=3时x²+2x+3=0(x+1)²-1+3=0(x+1)²=-2因为x+1>=0所以m=3无解(2)当m=-3时x²+2x-3=0(x-1)(x+3

已知关于x的一元二次方程x的平方+4x+m-1=0

x²+4x+m-1=0x1+x2=-4x1x2=m-1(x1)²+(x2)²=(x1+x2)²-2x1x2=16-2(m-1)=18-2m18-2m-(m-1)

已知关于x的一元二次方程x2+(m+3)x+m+1=0.

(1)证明:∵△=(m+3)2-4(m+1)…1分=(m+1)2+4…3分∵无论m取何值,(m+1)2+4恒大于0∴原方程总有两个不相等的实数根…4分(2)∵x1,x2是原方程的两根∴x1+x2=-(

已知关于X的一元二次方程x的平方-8x+m=0

假设x1>x2x1+x2=8x1²-x2²=(x1+x2)(x1-x2)=16所以x1-x2=2x1x2=m(x1-x2)²=(x1+x2)²-4x1x24=6

已知关于x的一元二次方程x2-(m-1)x+m+2=0.

(1)∵方程有两个相等的实数根,∴(m-1)2-4(m+2)=0,∴m2-2m+1-4m-8=0,m2-6m-7=0,∴m=7或-1;(2)∵方程的两实数根之积等于m2-9m+2,∴m2-9m+2=m

已知关于x的一元二次方程x²-(m-1)x+m+2=0

根据“的儿塔”等于0来做:m=-1或者m=72问:根据a分之c等于两根的乘积得:m+2=m平方-9m+2可求出m等于m=0(舍去)或m=10根号下m+6=根号6(舍去因为m》7或m《1),答案为根号m

已知关于x的一元二次方程mx^2-(2m-1)x+m-2=0

1.不一定证明:∵△=(2m-1)^2-4m(m-2)=4m+1所以当m>=-1/4时方程有两个不相等的实数根当m

已知关于x的两个一元二次方程:

(1)∵△1=(2k-1)2-4(k2-2k+132)=4k-25≥0,∴k≥254,∵△2=(k+2)2-4(2k+94)≥0,∴k2-4k-5≥0,(k-5)(k+1)≥0,∴k≥5或k≤-1,∴

已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0

1.(2m+2)^2-4m(m-1)≥0,m≠0m≥-1/3,且m≠02.此时m=1,x^2-4x=0,所以方程的根为x=0或x=4

已知关于x的一元二次方程x²+(m+2)x+2m-1=0

答x²+(m+2)x+2m-1=0证明Δ=(m+2)²-4(2m-1)=m²+4m+4-8m+4=m²-4m+4+4=(m-2)²+4因为(m-2)&

已知关于x的一元二次方程X^2-2mx+m^2-2m=0

方程有两个实数根,所以判别式delta=(-2m)^2-4(m^2-2m)=8m>=0,由此得m>=0.此时由求根公式,并注意x2>x1可以求得方程两根为x1=m-根号(2m),x2=m+根号(2m)