已知关于x的一元二次方程,分别满足下列条件,有两个正根,有两个异号根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:52:53
根的判别式b²-4ac=3^2-4(m-1)≥0是保证原方程有实数根
设所求方程的根为y,则y=1/x(x≠0),于是x=1/y(y≠0)把x=1/y代入方程ax²+bx+c=0,得a(1/y)²+b•1/y+c=0去分母,得a+by+c
x^2-x-3=0由韦达定理得a+b=1a*b=-3(a+3)(b+3)=ab+3(a+b)+9=-3+3*1+9=9
第一题:令已知方程的根为X1,X2,要求方程的根为X3,X4,且X3=1/X1,X4=1/X2则依题意有:X1+X2=-b/aX1*X2=c/a另外,X3+X4=1/X1+1/X2=(X1+X2)/(
http://zhidao.baidu.com/question/583189708.html
解由根与系数的关系知a+b=1又由a是方程x的平方-x-3=0的两个实数根则a^2-a-3=0即a^2-a=3故a^2+b=a^2-a+a+b=(a^2-a)+(a+b)=3+1=4
关于x的一元二次方程ax²+bx+c=0的两个根分别为x1,x2则ax1²+bx1+c=0,ax2²+bx2+c=0aP+bQ+cR=a(x1五次方+x2五次方)+b(x
直接开平方法,配方法,公式法,因式分解法因式分解法分为:提取公因式法,公式法,十字相乘法,分组分解法,主元法,换元法,待定系数法
x²+4x+m-1=0x1+x2=-4x1x2=m-1(x1)²+(x2)²=(x1+x2)²-2x1x2=16-2(m-1)=18-2m18-2m-(m-1)
再答:求好评
假设x1>x2x1+x2=8x1²-x2²=(x1+x2)(x1-x2)=16所以x1-x2=2x1x2=m(x1-x2)²=(x1+x2)²-4x1x24=6
因为原方程有两个不相等的实根,所以△=4+4a>0所以a>-1因为x1分之一+x2分之一=-3分之2所以(x1+x2)/x1x2=-2/3由根系关系可得:x1+x2=2,x1x2=-a所以2/(-a)
(1)△=b²-4ac=4+4A当△>0即4+4A>0即A>-1时,方程有两个不相等的实数根.(2)1/X1+1/X2=-2/3(X1+X2)/X1X2=-2/32/(-A)=-2/3A=3
(1)Δ=4-4k(2-k)≥01-2k+k²≥0(k-1)²≥0恒成立所以k可取任意实数.(2)x=(-2±2(k-1))/(2k)x=(-1±(k-1))/kx1=(k-2)/
解题思路:一元二次方程解题过程:答:选B把x=0带入得到。m2-1=0m=1或m=-1当m=1时候,二次项系数为0,此时便不是一元二次方程,故舍去m=1.所以选B同学您好,如对解答还有疑问,可在答案下
1、m=-3(方程ax+by+c=0中的b^2-4ac=0)2、用韦达定理x1+x2=-b/a=m+2x1*x2=c/a=1/4(m^2)-2结合条件x1^2+x2^2=18可得出m=-10或2m=-
(b+c)x^2-2a根号下m乘x+(c-b)m=0因一元二次方程有两个相等的实数根,则4a^2m-4(c+b)(c-b)m=0即4m(a^2-c^2+b^2)=0因m>0,则a^2-c^2+b^2=
令f(x)=x^2+ax+2b则由条件两实数根分别位于区间(0,1),(1,2)内结合二次函数的图象,可以得到:f(0)=2b>0f(1)=1+a+2b0可以求得:1/4再问:f(0)=2b>0f(1
(1)∵△1=(2k-1)2-4(k2-2k+132)=4k-25≥0,∴k≥254,∵△2=(k+2)2-4(2k+94)≥0,∴k2-4k-5≥0,(k-5)(k+1)≥0,∴k≥5或k≤-1,∴
再问:尽管不懂为什么要把方程设成那样!还是谢谢你→_→