已知关于x的方程2÷x 2-a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:40:07
已知关于x的方程2÷x 2-a
已知关于x的方程3a-x=x2

∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3解得:a=2,∴原式=a2-2a+1=22-2×2+1=1.

已知关于x的方程-x2+2x=|a-1|在x∈(12,2]

由于函数f(x)=-x2+2x=-(x-1)2+1≤1,故函数f(x)的值域为(-∞,1].根据已知关于x的方程-x2+2x=|a-1|在x∈(12,2]上恒有实数根,的图象和直线y=|a-1|的图象

已知关于x的方程x2+3k+1

∵关于x的方程x2+3k+1x+2k-1=0有实数根,∴b2-4ac=(3k+1)2-4×1×(2k-1)=3k+1-8k+4=-5k+5≥0,且3k+1有意义,则3k+1≥0,∴k≤1,k≥-13,

已知关于x的方程x2+3x+a=0的两个实数根的倒数和等于3,且关于x的方程(k-1)x2+3x-2a=0有实数根,又k

设方程x2+3x+a=0①的两个根为x1、x2,则x1+x2=−3x1•x2=a△=9−4a≥0由条件知1x1+1x2=x1+x2x1•x2=3即−3a=3且a≤94,故a=-1.(5分)则方程(k-

在关于x的方程x2-ax+4=0,x2+(a-1)x+16=0,x2+2ax+3a+10=0中,已知至少有一个方程有实数

若关于x的方程x2-ax+4=0,x2+(a-1)x+16=0,x2+2ax+3a+10=0没有实根,则△=a2−16<0△=(a−1)2−64<0△=4a2−4(3z+10)<0,解得-2<a<4,

已知方程(1-a2)x2-(a+1)X+8=0是关于x的一元一次方程

因为(1-a2)x2-(a+1)X+8=0是关于x的一元一次方程所以1-a2=0(既然是一元一次方程,就令二次项系数为零,把a看作常数就好了)解的a=1或-1所以a=1(如果a=-1的话,那一次项系数

已知关于x的方程X2+2x+1-a=0没有实数根,求证:关于X的方程X2+a(X+2)-1=0一定有两个不相等的实数根

因为x的方程X^2+2x+1-a=0没有实数根,所以Δ=2^2-4(1-a)<0,所以a<0.在关于X的方程X2+a(X+2)-1=0,化简得X^2+ax+2a-1=0,Δ=a^2-4(2a-1)=a

已知x1,x2是关于x方程x^2-ax+a^2-a+ (1/4)=0 的两个实根,那么(x1x2)/(x1+x2)的最小

因为x1x2=c/a,x1+x2=-b/a(其中,a=1,b=-a,c=a^2-a+(1/4)),则,x1x2/(x1+x2)=a-1+(1/4a)∵Δ=a²-4(a²-a+1/4

不等式:已知x1,x2是关于x方程x^2-ax+a^2-a+ (1/4)=0 的两个实根,那么(x1x2)/(x1+x2

因为x1,x2是关于x方程x^2-ax+a^2-a+(1/4)=0的两个实根,所以(1)△≥0,即a^2-4a^2+4a-1≥0,从而1≥a≥1/3(2)(x1x2)/(x1+x2)=a+1/4a-1

已知命题p:关于x的方程x2+mx+a=0(a>0)有两个不相等的实根,命题q:关于x的方程4x2+4(m-2)x+1=

∵关于x的方程x2+mx+a=0(a>0)有两个不相等的实根,∴△>0,即m2-4a>0,得A={m|m<-2a或m>2a}∵关于x的方程4x2+4(m-2)x+1=0无实根,∴△<0,即1<m<3,

已知关于x的方程x2+(a+1)x+a+2b+1=0的两个实数根分别为x1、x2,且0

解题思路:分析:令f(x)=x^2+(a+1)x+a+2b+1,由于关于x的方程x^2+(a+1)x+a+2b+1=0的两个实根分别为x1,x2,且0<x1<1,x2>1,可得f(0)>0,f(1)<

已知关于x的方程5x2−a=5x8+142

∵5x2−a=5x8+142,∴158x=a+142,即x=815(a+142),∵x为自然数解,(8,15)=1,且a为自然数,∴a最小为8.故答案为8.

已知关于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:

首先方程有二实根的充要条件是:1-a≠0 △=(a+2)2+16(1-a)≥0 解之得:a≥10或a≤2且a≠1设方程的二实根为x1,x2,则x1+x2=a+2a-1,x1x2=4

已知方程ax2+3x+5=5x2-2x+3a是关于x的一元一次方程,则这个方程的解为( )

ax2+3x+5=5x2-2x+3a(a-5)x^2+5x+5-3a=0是关于x的一元一次方程:则,a-5=0a=55x+5-15=0x=2

已知关于x的方程14x2−2ax+(a+1)2=0有实根.

(1)∵关于x的方程14x2−2ax+(a+1)2=0为一元二次方程,且有实根.故满足:a≥0△=(−2a)2−4×14×(a+1)2≥0.整理得a≥0(a−1)2≤0.解得a=1(2)∵mx2+(1

已知锐角a,且tan a是关于x的方程x2-2x-3的一个根,求(cos a+sin a)(cos a-sin a)/2

x2-2x-3=0x=-1或x=3锐角a,tana>0tana=3(cosa+sina)(cosa-sina)/2sina*cosa=(cos^2a-sin^2a)/(2cosa*sina)分子分母同

已知关于x的方程x2+2x-a+1=0没有实数根,试判断关于x的方程x2+ax+a=1是否一定有两个不相等的实数根,并说

关于x的方程x2+ax+a=1一定有两个不相等的实数根,理由如下:由x的方程x2+2x-a+1=0没有实数根,得△=b2-4ac=4-4(-a+1)<0,解得a<0,由x2+ax+a=1,得△=b2-

已知关于x的方程x(x-2)分之x2+4-x-2分之x=x分之a,无解,求a的值

这是七年级下册的分式方程.1.去分母:两边同时乘X*(X-2)得X²+4-X²=a*(X-2)2.去括号,合并同类项得aX=2a+43.系数化为一得X=a分之2a+4因为方程无解,

已知方程(|a|-2)x2+(a-2)x+(a+1)y=4是关于x、y的二元一次方程,求a的值

二元一次方程则没有二次项且x和y系数不等于0|a|-2=0a=±2且a-2≠0所以a=-2