已知关于x的方程3 2(2x-4)-m=2为正数,求m的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:34:05
由第一个方程得:x=a5(3分)由第二个方程得:x=39−4a13(3分)所以a5=39−4a13,解得a=6511,(3分)所以x=1311(3分)
解题思路:由条件中的两个等量关系可直接求得方程两根,再用代入法或根与系数的关系证明出a=b=c.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("
4a+x=2x=2-4a因为解是负数所以2-4a1/2
由方程(1)得x=27a由方程(2)得:x=27−2a21由题意得:27a=27−2a21解得:a=2714,代入解得:x=2728.∴可得:这个解为2728.
①当△=0时,看根在不在[1,+∞)的范围内②当△>时, 分两种左右情况, 左边的情况是,△>0且f(1)<=0 右边的情况是,△>0
3x/(x+1)-(x+4)/(x^2+x)=-23x^2-(x+4)=-2(x^2+x)3x^2-x-4=-2x^2-2x5x^2+x-4=0(5x-4)(x+1)=0x1=4/5x2=-1经检验,
4+5x=2x+1∴5x-2x=1-4∴3x=-3∴x=-1把x=-1代入x+3|a|=5-9x得-1+3|a|=5+9∴3|a|=15|a|=5∴a=5或-5
△=〔-(2k+1)〕^2-16(k-0.5)=4k^2+4k+1-16k+8=4k^2-12k+9=(2k-3)^2不论k取何值,都有△=(2k-3)^2所以方程总有实数根当b,c为腰长时,说明方程
设f(x)=x2+(12-2m)+m2-1,对称轴为x=m-14,△=(12−2m)2-4(m2-1)=174-2m,f(0)=m2-1,f(2)=m2-4m+4=(m-2)2,由题意得:△≥00≤m
1.先求出方程2的解,再带入方程1,可求出m,x=48/7,m=-41/142.原式=[(m+1/2)(4m-3)]^2008*(4m-3)麻烦你检查下题是否正确,一般来说(m+1/2)(4m-3)会
由(1)方程得:x=2a7;由(2)方程得:x=24−2a21由题意得:2a7=24−2a21解得:a=3,将a=3代入可得:x=67.
解方程2x+12=6x-2得:x=12;因为方程的解互为倒数,所以把x=12的倒数2代入方程x-m2=x+m3,得:2-m2=2+m3,解得:m=-65.故所求m的值为-65.
(1)已经有一个根是x=2了,∴只需x²-4x+m=0有两个实根即可,故△=16-4m≥0,解得:m≤4;(2)设方程x²-4x+m=0的两个根是x1与x2,则x1+x2=4x1x
去分母,得a+2=x+1,解得:x=a+1,∵x≤0,x+1≠0,∴a+1≤0,x≠-1,∴a≤-1,a+1≠-1,∴a≠-2,∴a≤-1且a≠-2.故答案为:a≤-1且a≠-2.
方程判别式△=[-2(m+1)]²-4·4·m=4m²-8m+4=4(m-1)²恒≥0,方程恒有实根.设两根分别为x1,x2,由韦达定理得x1+x2=2(m+1)/4=(
x/(x-3)=2-m/(3-x)等式两边同时去分母,可得:x=2x-6+m所以x=6-m又该方程有一个正数解所以x=6-m>0,m
分式方程去分母得:x+a=-x+2,解得:x=2−a2,根据题意得:2−a2>0且2−a2≠2,解得:a<2,a≠-2.故答案为:a<2,a≠-2.
3(x-2)=4x-5,3x-6=4x-5,3x-4x=-5+6,-x=1,x=-1,∵关于x的方程2x−a3-x−a2=x-1与方程3(x-2)=4x-5的解相同,∴把x=-1代入得:−2−a3-−