已知函数f x的定义域为R,切当x属于R时,f(m x)=f(m-x)恒成立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:08:40
1f(0)=(b-1)/(a+2)=0=>b=1f(1)=-f(-1)=>a=02f(x)在R上是减函数f(t^2-2t)+f(2t^2-k)<0f(t^2-2t)f(t^2-2t)t^2-2t>k-
∵定义域为R∴y=ax²+2x+3的解集为全体实数∴a>0△=4-12a1/3(2)∵底数4>1∴f(x)同y=ax²+2x+3同增减又∵f(1)=1∴a+2+3=4∴a=-1∴y
根据题目,得知x>0,且f(x)导数为1/x+2x+a,要求函数f(x)在其定义域上为增函数,则要求1/x+2x+a,在x>0的情况下恒大于0,即最小值大于0,g(x)=1/x+2x+a,它的导数为-
1.f(-0)=f(0)得f(0)=02.f(x-1)=-f(1-x)=-f(1+x)得出f(x)=-f(x+2)从而得到f(x-2)=-f(x)=f(x+2)故周期为43.由周期函数可以得到:(画图
根据奇函数的定义取任意取两个x值得到两个方程解一下就可知道AB值,定义域的证明可以用单独函数的定义域为R和函数的定义域也为R(函数的四则运算)
解,因为奇函数所以f(-x)=-f(x)x0时,令-x=xf(x)=2+x-x^2当x=0时f(0)=0,所以f(x)的定义式为2+x-x^2x>0f(x)=0x=02-x-x^2x
取任意x1则-x1>-x2>0因为f(x)在(0,+∞)上是增函数所以f(-x1)>f(-x2)又因为f(x)是定义域是R的偶函数所以f(-x1)=f(x1),f(-x2)=f(x2)所以f(x1)>
令x=y=02f(0)=f(0)f(0)=0令y=-xf(x)+f(-x)=f(0)=0-f(x)=f(-x)是奇函数
x≤0时f(x)=-x^2+x则-x≥0f(-x)=-f(x)=x^2-x即x>0时,f(x)=x^2-x
f(0)+f(0)=f(0).所以f(0)=0.f(x)+f(-x)=f(0)=0.所以f(x)=-f(-x).所以是奇函数.我不知道你那个x<0时,f(x)>0是干嘛的.
证明:任取x10因为:fx在(0,到正无穷)上是减函数所以:f(-x1)
f(2x)同样是f函数,所以定义域下共同,也是(1,2)考虑到f(2x)是含2x的复函数,所以令2x=t,那么按上句话说的f(t)的定义域就是(1,2)即1
1)令x=a,y=1,a∈Rf(a)+f(1)=f(a+1)f(a+1)-f(a)=f(1)=-2/3
f(x)的定义域为(0,2],那么f(√x+1)中,√x+1的取值范围是(0,2],所以0
题目有错:第题漏了一个m应该是:(2)若不等式-m^2+(k+2)m-1.5
[-3,3](也就是关于原点对称的最大定义域)
f'(x)=e^x·(x²-3x+2)=e^x·(x-1)(x-2),当x∈(1,2)时,f'(x)<0,所以f(x)单调递减,即单调递减区间是(1,2)单调递增区间是(-∞,1),(2,+
f2011=f1=0fx=f(x)=(x-2k+1)²(x∈[2k,2k+2],k∈Z)gx=fx-lgx,求gx零点个数gx=fx-lgx=0f(x)=lgxlg10=1f10=f0=1l
已知定义域为R的函数f(x)=(-2^x+b)/(2^x+1+a)是奇函数.因为定义域为R的奇函数,所以f(0)=0f(0)=(-2^0+b)/(2^0+1+a)=(-1+b)/(2+a)=0分母不为