已知函数f(2x 1)=3x-2,求函数f(x)的解析式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:19:05
根据题意:1−x1+x>0∴-1<x<1其定义域为:(-1,1)关于原点对称.又f(-x)=lg1+x1−x=-lg1−x1+x=-f(x)∴f(x)是奇函数∴f(-a)=-f(a)=-b故答案为:-
(I)证明:左边=f(x1)+f(x2)=log21+x11-x1+log21+x21-x2=log2(1+x11-x1•1+x21-x2)=log21+x1+x2+x1x21-x1-x2+x1x2.
(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.
可以用求导的方法吗?再问:可以我高3再答:那就可以蛮干了。。f'(x)=(1-x)e^(-x),有f(x)极大值1,在(负无穷,1)递增,在(1,正无穷)递减,根据f(0)=f(正无穷)=0可以画草图
(f(x1)+f(x2))/2=(lgx1+lgx2)/2=log(x1*x2)^0.5f[(x1+x2)/2]=lg((x1+x2)/2)=lg(x1+x2)-lg2x1>0x2>0x1+x2>=2
∵f(x)=2x1−x,∴f(ax)=2ax1−x,设x1<x2,则f(x1)-f(x2)=2ax11−x1-2ax21−x2=2a(x1−x2)(1−x1)(1−x2)∵x1-x2<0,a<0,∴2
inputx,yifx1,theny=1+2xprinty
法一:由y=1−2x1+x得x=1−yy+2,∴f−1(x)=1−xx+2,f−1(x+1)=−xx+3∴g(x)与y=−xx+3互为反函数,由2=−xx+3,得g(2)=-2.法二:由y=f-1(x
【标准解答】因为f(x1-x2)=1+f(x1)f(x2)/f(x2)-f(x1)=1+f(x1)-f(x1)=1同时又有f(x2-x1)=1+f(x1)f(x2)/f(x1)-f(x2)=1+f(x
因为:f(x)=lgx,x1,x2∈R+所以,[f(x1)+f(x2)]/2=(lgx1+lgx2)/2=lg(√x1x2)f[(x1+x2)/2]=lg[(x1+x2)/2]由匀值定理得:x1+x2
x1=-2,x2=5A={x|x=5}A∩B=空集,则2m-1>=-2且3m+2
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
证明:f'(x)=(1-x)e^(-x),当f'(x)=0时,有x=1.当x>1时,f'(x)<0;当x<1时,f'(x)>0.所以,在x=1时f(x)取得极大值和最大值.又当x趋近于+∞时,f(x)
(X1-X2)[F(X1)-F(X2)]大于0=>f为增00
原函数可分为y=loga(u)(1)与u=x^2-ax+3(2)而a/2恰巧为(2)函数的对称轴,并且该函数开口向上,则在(负无穷,a/2]上(2)函数为减函数且f(x)=loga(x^2-ax+3)
函数f(x)对任何x属于R恒有f(x1*x2)=f(x1)+f(x2),已知f(8)=3,则f(√2)=?因为函数f(x)对任何x属于R恒有f(x1*x2)=f(x1)+f(x2)所以f(x)=log
由于f(x)=xe^(-x),x∈R所以x=f(x)/(e^x)由题意,可以设f(x1)=f(x2)=K所以:x1=f(x1)/(e^x1)=K/(e^x1)同理:x2=K/(e^x2)考虑到x1与x
(1)函数f(x)=ax^3+cx(a>0)在X1,X2处分别取得极值则得,f(x1)'=0,f(x2)'=0f(x)'=3ax^2+c则得3a(x1)^2+c=0,3a(x2)^2+c=o两式相减得