已知函数f(x)=(2x-1) (2x 1),试讨论函数f(x)的单调性与奇偶性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:11:16
-3或者1再问:求详解·,谢谢再答:这是分段函数啊。。当X>=0时,FX=2X+1。。然后你把2X0+1=3带入,求出X0=1当X
将f(x)代入不等式,得到:x^2+2/x-(x-1)^2-2/(x-1)>2x-1两边同乘以x(x-1),得到x^3(x-1)+2(x-1)-x(x-1)^3-2x>(2x-1)x(x-1)展开整理
这个题目本身是有问题的,用什么方法都不能求F'(1),因为它根本就不存在.或许你条件没给全,如果定义F(1)=lim(1-1/x)^(2x) (x-->1+),则 F
f(-1)=(-2-1)/(-1)=3f(1)=(2-1)/1=1f(-1)=f(1)和f(-1)=-f(1)都不成立所以是非奇非偶函数
f(x)=2x²,f(-x)=2×(-x)²=2x即把-x带入x同理f(1+x)=2×(1+x)²=2x²+4x+2
f(1-x)+2f(x)=2(1-x)f(x)+2f(1-x)=2x连立,得到f(x)=4/3-2x
f(2x+1)=(2x+1)/(x+1)令2x+1=t,x+1≠0,x≠-1x=(t-1)/2∴f(t)=f(2x+1)=(2x+1)/(x+1)=t/[(t-1)/2+1]=2t/(t+1)∴f(x
f(x)=(2x)/(x^2+1)为减函数设x1>x2>1f(x1)-f(x2)=2x1/(x1^2+1)-2x2/(x2^2+1),=[2x1(x2^2+1)-2x2(x1^2+1)]/(x1^2+
2f(x)+f(1/x)=3x----(1)令x=1/t得2f(1/t)+f(t)=3/t等效于f(x)+2f(1/x)=3/x----(2)(1)*2-(2)得3f(x)=6x-3/x所以f(x)=
设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c
典型的分类讨论.第一种情况m和2-m“都是大于零的情况,此时m在0和根号2之间fx={x+0.5}”+0.75是对称轴x=0.5的函数,分m和2-m“在对称轴左边,或者都在右边或者分别在两边的情况讨论
分段函数分段讨论当X
由3f(x)+2f(1/x)=x+1令1/x=t,则3f(1/t)+2f(t)=1/t+1因为函数与表示自变量的字母无关,所以可以表示为3f(1/x)+2f(x)=1/x+1联立两式得f(x)=3x/
(1)f(x)=2-1/x+1设1≤x1<x2≤4f(x1)-f(x2)=2-1/(x1+1)-〔2-1/(x2+1)〕=-1/(x1+1)+1/(x2+1)=(x1-x2)/(x1x2+x1+x2+
这个,是两个函数吧(1)f(x)=(2-a)x+1,x
(1)f(x)=|2x+1|-|x-3|
f(0)=2^0+1=2f(2)=x^2+2x=2^2+4=8f(f(0))=8
f(-x)=2(-x)^2=2x^2f(1+x)=2(1+x)^2=2x^2+4x+2即-10≤3x-4≤5则-2≤x≤3即定义域【-2,3】
2f(1/x)-f(x)=x把1/x换成x,2f(x)-f(1/x)=1/x第二式乘以2,两式相加f(x)=1/3乘以x+2/3乘以1/x
原函数即2F(u)+F(1/u)=3/u令u=1/x,则2F(1/x)+F(x)=3x----------------①方程①-原方程*2得-3F(x)=3x-6/x即F(x)=2/x-1哎,现在的孩