已知函数f(x)=e^x 2x^2-3x.求证:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:38:55
已知函数f(x)=e^x 2x^2-3x.求证:
已知函数f(x)=-xlnx+ax在(0,e)上是增函数,函数g(x)=|e

∵f(x)=-xlnx+ax,∴f'(x)=-lnx+a-1∵函数f(x)=-xlnx+ax在(0,e)上是增函数∴f'(x)=-lnx+a-1≥0在(0,e)恒成立∵y=-lnx是(0,e)上的减函

已知函数f(x)=(x^2+a)/e^x(e是自然对数的底数)

1,a=15,函数一阶导f'(x)=(-x^2+2x-15)/e^x=(-(x-1)^2-14)/e^x

已知函数f(x)=e^x+ax^2+bx.设函数f(x)在点(t,f(t))(0

已知函数f(x)=e^x+ax²+bx.设函数f(x)在点(t,f(t))(0

已知函数f(x)=e^[(kx-1)/(x+1)](e是自然对数的底数)

已知函数f(x)=e^[(kx-1)/(x+1)](e是自然对数的底数),若对任意的x∈(0,+无穷),都有f(x)

已知函数f(x)=e^x-ln(x+1)①求函数f(x)的最小值②已知0

求f(x)的导数导数为0处即是最小值点

已知函数f(x)=−2x2x+1.

(1)设x1<x2,则f(x1)-f(x2)=2x22x2+1-2x12x1+1=2x2−2x1(2x1+1)(2x2+1)∵x1<x2,∴2x2-2x1>0又2x1+1>0,2x2+1>0,f(x1

已知函数f(x)=e^x+ax

∵f(x)在(0,+∞)是增函数∴当x∈(0,+∞)时,f(x)'=e^x+a>0∴a>-e^x而-e^x所以a>=-1

已知函数f(x)=lnx+k/e^x

f(x)=lnx+k/e^x=lnx+ke^(-x)f'(x)=1/x-ke^(-x)=1/x-k/e^x

已知函数f(x)=e^x*(cosx-sinx),求导f'(x)

∵f(x)=e^x*(cosx-sinx)∴f'(x)=(e^x)'(cosx-sinx)+e^x(cosx-sinx)'=e^x(cosx-sinx)+e^x(-sinx-cosx)=e^xcosx

已知函数f(x)=(x+1)/e^x.求函数的单调区间.

思路:求导数,根据导数的正负判断单调性f(x)=(x+1)/e^xf‘(x)={(x+1)'*e^2-(1+x)-(e^x)'}/[e^x]^2=-x/(e^x)所以当x0函数单调增加所以当x>0时,

已知f(x)是偶函数,x∈R,当X>0时,f(x)为增函数,若X1小于0X2X大于0,且|X1

这类题目你可以画函数草图可以判断答案具体题目你自己去试试

已知定义在R上的函数f(x)=b−2x2x+a是奇函数

(1)∵f(x)是定义在R上的奇函数,∴f(0)=b−1a+1=0,解得b=1,(1分)∴f(x)=1−2xa+2x,∴f(−x)=1−2−xa+2−x=2x−1a•2x+1=−f(x)=2x−1a+

已知函数f(x)=e^x-ln(x+1).

1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+

函数f(x)=1−3x2x+1

∵f(x)=1−3x2x+1=-32+52(2x+1),又∵52(2x+1)≠0,∴f(x)≠-32,则函数f(x)=1−3x2x+1的值域为(-∞,-32)∪(−32,+∞).故答案为:(-∞,-3

已知函数f(x)=ln[e^x-e^(-x)],则f(x)是

首先判断奇偶要看定义域是否关于原点对称,只有在对称情况下才能接下来判断定义域e^x-e^(-x)>0e^x>e^(-x)x>-x2x>0x>0定义域都不关于原点对称,∴是非奇非偶函数这是个复合函数外面

已知函数f(x)=lnx-e∧x+a

此题模仿今年新课标理数21题压轴题,有兴趣可以去对比下(1)f'(x)=1/x-e^(x+a)f'(1)=1-e^(1+a)=01+a=0a=-1∴f(x)=lnx-e^(x-1)f&

已知函数f(x)=e的x次方,x0,则f﹙f﹙1/e﹚﹚=?

f(x)=e^x,x01/e>0f(1/e)=ln(1/e)=-1f(f(1/e))=f(-1)=1/e

已知函数f(x)=(x-k)^2*e^x/k 求函数单调区间

k不等于零,所以x不等于零.