已知函数f(x)=e^x 2x^2-3x.求证:
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:38:55
∵f(x)=-xlnx+ax,∴f'(x)=-lnx+a-1∵函数f(x)=-xlnx+ax在(0,e)上是增函数∴f'(x)=-lnx+a-1≥0在(0,e)恒成立∵y=-lnx是(0,e)上的减函
1,a=15,函数一阶导f'(x)=(-x^2+2x-15)/e^x=(-(x-1)^2-14)/e^x
(1)(0,-1/a)(2)a>=-0.5(3)-3和1
已知函数f(x)=e^x+ax²+bx.设函数f(x)在点(t,f(t))(0
已知函数f(x)=e^[(kx-1)/(x+1)](e是自然对数的底数),若对任意的x∈(0,+无穷),都有f(x)
求f(x)的导数导数为0处即是最小值点
(1)设x1<x2,则f(x1)-f(x2)=2x22x2+1-2x12x1+1=2x2−2x1(2x1+1)(2x2+1)∵x1<x2,∴2x2-2x1>0又2x1+1>0,2x2+1>0,f(x1
∵f(x)在(0,+∞)是增函数∴当x∈(0,+∞)时,f(x)'=e^x+a>0∴a>-e^x而-e^x所以a>=-1
f(x)=lnx+k/e^x=lnx+ke^(-x)f'(x)=1/x-ke^(-x)=1/x-k/e^x
∵f(x)=e^x*(cosx-sinx)∴f'(x)=(e^x)'(cosx-sinx)+e^x(cosx-sinx)'=e^x(cosx-sinx)+e^x(-sinx-cosx)=e^xcosx
思路:求导数,根据导数的正负判断单调性f(x)=(x+1)/e^xf‘(x)={(x+1)'*e^2-(1+x)-(e^x)'}/[e^x]^2=-x/(e^x)所以当x0函数单调增加所以当x>0时,
这类题目你可以画函数草图可以判断答案具体题目你自己去试试
(1)∵f(x)是定义在R上的奇函数,∴f(0)=b−1a+1=0,解得b=1,(1分)∴f(x)=1−2xa+2x,∴f(−x)=1−2−xa+2−x=2x−1a•2x+1=−f(x)=2x−1a+
1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+
∵f(x)=1−3x2x+1=-32+52(2x+1),又∵52(2x+1)≠0,∴f(x)≠-32,则函数f(x)=1−3x2x+1的值域为(-∞,-32)∪(−32,+∞).故答案为:(-∞,-3
首先判断奇偶要看定义域是否关于原点对称,只有在对称情况下才能接下来判断定义域e^x-e^(-x)>0e^x>e^(-x)x>-x2x>0x>0定义域都不关于原点对称,∴是非奇非偶函数这是个复合函数外面
此题模仿今年新课标理数21题压轴题,有兴趣可以去对比下(1)f'(x)=1/x-e^(x+a)f'(1)=1-e^(1+a)=01+a=0a=-1∴f(x)=lnx-e^(x-1)f&
f(x)=e^x,x01/e>0f(1/e)=ln(1/e)=-1f(f(1/e))=f(-1)=1/e
k不等于零,所以x不等于零.