已知函数f(x)=lg(x² mx 1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:02:17
1-x>0且1+x>0;定义域:x∈(-1,1)f(x)=lg(1-x)-lg(1+x)=lg[(1-x)/(1+x)](1)f(-x)=lg[(1+x)/(1-x)]=-lg[(1-x)/(1+x)
f-g的定义域为f与g的定义域的交集,易得f的定义域为{x>0},g为{x>-1}交集为{x>0}f=g我们得到lg[(kx)^(1/2)]=lg(x+1)又因为lg函数onetoone(一一对应)所
答:f(x)=lg(3+x)+lg(3-x),-30的单调递减区间[0,3)就是f(x)的单调减区间
(1)对于函数f(x)=lg|x|,它的定义域为{x|x≠0},关于原点对称,再根据f(-x)=lg|-x|=lg|x|=f(x),可得函数为偶函数.(2)先作出函数在(0,+∞)上的图象,再把所得图
奇函数,表示F(-X)=-F(X),由题意可知f(-x)=lg(2-x)-lg(a+x)=-f(x)=lg(a-x)-lg(2+x),可得a=22、第二题根据这两点:一、定义域的问题,即使lg(2+m
(1)要使函数f(x)有意义,须满足1+x>01−x>0,解得-1<x<1,∴函数f(x)的定义域为(-1,1);(2)由(1)知函数定义域为(-1,1),关于原点对称,对于任意x∈(-1,1),有-
再问:我认为函数f(x)应该取最小值,如果按你这作法,那当lg(4-x^2)取lg(3)时,m取lg(3.5)那就是无解了再答:不应该取最小值,有解问题只需要有一个解满足条件就可以了。如果是最小值的话
(1)x须满足2+x>02−x>0,∴-2<x<2,∴所求函数的定义域为(-2,2)(2)由于-2<x<2,∴f(x)=lg(4-x2),而g(x)=10f(x)+3x,g(x)=-x2+3x+4(-
令t=x-3,则x=t+3,代入f(t)=lg[(t+3)/(t-3)]把t换成xf(x)=lg[(x+3)/(x-3)],这是解析式.f(x)=lg[(x+3)/(x-3)](x+3)(x-3)>0
(1)f(x)=lg(x+1),g(x)=2lg(2x-1)F(x)=lg(x+1)+2lg(2x-1)那么x+1>0,2x-1>0,得x>1/2(2)2f(x)≤g(x)有lg(x+1)≤lg(2x
(1)原不等式等价于x+1>02x1>0x+1≤(2x1)2即x>124x25x≥0,即x>12x≤0或x≥54∴x≥54,所以原不等式的解集为{x|x≥54}(2)由题意可知x∈[0,1]时,f(x
1,当k>0时,x>0且x+1>0,得x>0当k
f(x)>0可以化为lg(1+x)>lg(1-x),所以1+x>1-x>0,由1+x>1-x得x>0;由1-x>0得x取交集,得0
(1)1-x>0,1+x>0,所以-1
~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
00即-1
函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a
(1)当a=-1时,求函数F(x)=f(x)+g(x)的定义域f(x)=lg(x+1),g(x)=2lg(2x-1)F(x)=lg(x+1)+2lg(2x-1)那么x+1>0,2x-1>0,得x>1/
/>f(x)=lg(2+x)+lg(2-x)定义域是2+x>0,2-x>0即-2再问:为什么f(x)的值域与m的取值范围是一样的?谢谢再答:不一样啊?不能取lg4有解,只要f(x)的最大值大于m即可。
先看该函数的定义域,为x>1或x<-1,关于y轴对称,讨论f(x)和f(-x)的关系,得到该函数为偶函数,、lgx²-1<1,则lgx²-1<lg10,因为底数为10,所以x&su