已知函数f(x)=x a x在[-2,2]上恒有f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:09:49
往下面算啊得f(1)=f(1)+f(1)然后f(1)=2f(1)移项2f(1)-f(1)=0f(1)=0够详细吧
等价于三个不等式:-1
已知函数f(x)=e^x+ax²+bx.设函数f(x)在点(t,f(t))(0
这是高中时学的“对勾函数”一般式;y=x+a/x,(a>0);一定要记住它的图像呀;以后求值域,单调性,最值时特有用;希望对你有帮助;所以该函数的单调增区间为:[2,+无穷)和(-无穷,-2)单
f′(x)=ax−1ax2(x>0),(1)由已知,得f′(x)≥0在[1,+∞)上恒成立,即a≥1x在[1,+∞)上恒成立,又∵当x∈[1,+∞)时,1x≤1,∴a≥1,即a的取值范围为[1,+∞)
证明:f'(x)=1-122-x当x∈(-∞,74)时,f'(x)>0∴f(x)在(-∞,74)上是增函数.
第一个问题:∵f(x)=x+9/x,∴f′(x)=1-9/x^2.令f′(x)>0,得:1-9/x^2>0,∴x^2-9>0,∴x^2>9,∴x>3.∴函数的增区间是(3,+∞),减区间是(0,3).
1.证明:假设x1和x2均大于0,且00即函数y=f(x)在0到正无穷大上是增函数.2.3.f(-x)=-f(x)(-x+1)(-x+a)/-x=-(x+1)(x+a)/x所以(-x+1)(-x+a)
(1)令x=y=1,则f(1)=f(1)-f(1)=0令x=1,则且f(1/y)=f(1)-f(y)=-f(y)=>f(1/y)=-f(y)则f(xy)=f(x/(1/y))=f(x)-f(1/y)=
x属于(0,正无穷),f'(x)=lnx+1在(0,正无穷)上f'(x)>0,f(x)是增函数x=1时f(x)取到最小值f(1)=1*ln1=0
由f(x)=cosx+sinx,则f′(x)=-sinx+cosx,∴f′(π2)=−sinπ2+cosπ2=−1,而f(π2)=cosπ2+sinπ2=1,∴函数f(x)在x0=π2处的切线方程是y
(1)∵f(x)=1−xax+lnx∴f′(x)=ax−1ax2(a>0)∵函数f(x)在[1,+∞)上为增函数∴f′(x)=ax−1ax2≥0对x∈[1,+∞)恒成立,∴ax-1≥0对x∈[1,+∞
f(x)=a-(1/x的绝对值)当x>0时x的绝对值=x则f(x)=a-1/x设0
f(x)=xax+b=x,整理得ax2+(b-1)x=0,有唯一解∴△=(b-1)2=0①f(2)=22a+b=1,②①②联立方程求得a=12,b=1∴f(x)=2xx+2f(-3)=6,∴f[f(-
f'(x)=1-cosx>=0因此f(x)在R上为增函数.再问:高一应该怎么做?不用导数再答:高一呀,那估计只能用定义法了,但这种题用定义法实在不容易化简哪。
(1)另f(x)=x(x+2)=0,的x=0,-2(2)第二小题有问题错误
f(-x)=lg|-x|=lg|x|=f(x)所以f(x)是偶函数x>0时,f(x)=lgx,单调增,x0时相反,所以,在(负无穷,0)上是减函数
笨!定义法做啊.分母是x2的平方加1乘x1的平方加1.肯定大于零.
(1)当a=1时,f(x)=1x+lnx−1,f′(x)=−1x2+1x=x−1x2(x>0),令f′(x)=0得x=1.f′(x)<0得0<x<1,f′(x)>0得1<x,∴f(x)在(0,1)上单
这题方法很多啊方法一:求导令f'(x)=1-2x^(-2)>0很容易得到x√2去右边就行方法二:用基本不等式x+2/x>=2√2当且仅当x^2=2时成立所以x=√2这和双钩函数一样右支最小值是x=√2