已知函数f(x)=x-1 e^x(1)求f(x)的单调区间和极值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:43:33
已知函数f(x)=x-1 e^x(1)求f(x)的单调区间和极值
已知函数f(x)满足f(x)=f'(1)e^(x-1) - f(0)x+(1/2)x^2 (2)若f(x)≥(1/2)x

1、f(x)=f′(1)e^(x-1)-f(0)x+1/2x^2中,令x=0的f'(1)=ef(0)所以f(x)=f(0)e^x-f(0)x+1/2x^2关于x求导得:f'(x)=f(0)e^x-f(

已知函数f(x)=x²+e^x-1/2(x

∵f(x),g(x)均非偶函数,∴其关于y轴的对称点不可能在自身图像上,而只能在另一函数图像上又∵f(x)的定义域为x<0,∴g(x)图像上的点只能在x>0时才可能有对称点存在假设函数g(

已知函数f(x)=e^[(kx-1)/(x+1)](e是自然对数的底数)

已知函数f(x)=e^[(kx-1)/(x+1)](e是自然对数的底数),若对任意的x∈(0,+无穷),都有f(x)

已知函数f(x)=x-1+a/e ^x (a属于实数),求f(x)的极值

f(x)=x-1+a/e^x易知①当a>0时f'(x)=1+a(e^(-x))'=1-a(e^(-x))令f‘(x)=0则1-a(e^(-x))=0x=lna所以f(x)有极小值f(lna)=lna②

已知函数F(X)={(1+X)/(1-x)}*e^-ax

利用分离变量的方法因为f(x)>1e^-ax>(1-x)/(1+x)-ax>ln(1-x)/(1+x)a

已知函数f(x)=e^x-ln(x+1)①求函数f(x)的最小值②已知0

求f(x)的导数导数为0处即是最小值点

已知函数f(x)=ln(1+e^x)+x,x属于R

设X1>X2F(X1)-F(X2)=In[(1+e^x1)/(1+e^x2)]+x1-x2x1>x2x1-x2>0[(1+e^x1)/(1+e^x2)>1In[(1+e^x1)/(1+e^x2)]>0

已知函数f(x)=e^x+ax

∵f(x)在(0,+∞)是增函数∴当x∈(0,+∞)时,f(x)'=e^x+a>0∴a>-e^x而-e^x所以a>=-1

2014高考数学题.已知函数f(x)=x^2+e^x-1/2(x

题目可转化为:假设对称点为(x0,y0)和(-x0,y0),其中:x0>0此时有:x0^2+e^(-x0)-1/2=x0^2+ln(x0+a)即x^2+e^(-x)-1/2=x^2+ln(x+a

已知函数f(x)=lnx+k/e^x

f(x)=lnx+k/e^x=lnx+ke^(-x)f'(x)=1/x-ke^(-x)=1/x-k/e^x

已知函数f(x)=lnx+a/x,g(x)=x,F(x)=f(1+e的x次方)-g(x),x属于R

为什么我会想直接求二阶导数.然后证明为凸函数就行了.囧.第二个化为m(lnx+x)=x^2/2有且有一个跟令H(x)=x^2/2-m(lnx+x)让H(x)的零点为1个就行了.不过我还是挺纠结.凸函数

已知函数f(x)=(x+1)/e^x.求函数的单调区间.

思路:求导数,根据导数的正负判断单调性f(x)=(x+1)/e^xf‘(x)={(x+1)'*e^2-(1+x)-(e^x)'}/[e^x]^2=-x/(e^x)所以当x0函数单调增加所以当x>0时,

已知函数f(x)=ln(x+m),g(x)=e^x-1,F(x)=g(x)-f(x)在x=0处取得极值.

1、F(x)=g(x)-f(x)=(e^x-1)-ln(x+m)F'(x)=e^x-1/(x+m)当x=0时,F'(x)=0,即e^0-1/(0+m)=0,m=1F'(x)=e^x-1/(x+1)当x

已知函数f(x)=(1-a/x)e^x(x>0)(其中e为自然对数的底数)

/>方程x2-ax+a=0在(0,+∞)内存在两个不等实根,则(1)判别式大于0,(2)两根之和大于0,即a>0,(3)两根之积大于0,即a>0(利用韦达定理)再问:貌似懂了,但还是有点迷迷糊糊的再答

已知函数f(x)=(x^2-2x)e^x(1)求f(x)的单调区间

令F’(x)=(x^2-2)e^x=0==>x=±√2F”(x)=(2x+x^2-2)e^x,F”(-√2)=(-2√2)e^(-√2)0∴f(x)在x=-√2处取极大值,在x=√2处取极小值x∈(-

已知函数f(x)=e^x-ln(x+1).

1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+

已知x=1是函数f(x)=(x^2+ax)e^x,x>0和bx ,x

x>0时,f'(x)=(2x+a)e^x+(x²+ax)e^x=[x²+(a+2)x+a]e^x∵x=1是f(x)的极值点∴f'(1)=0即1+(a+2)+a=0a=-3/2f'(

已知函数f(x)=ln[e^x-e^(-x)],则f(x)是

首先判断奇偶要看定义域是否关于原点对称,只有在对称情况下才能接下来判断定义域e^x-e^(-x)>0e^x>e^(-x)x>-x2x>0x>0定义域都不关于原点对称,∴是非奇非偶函数这是个复合函数外面

已知函数f(x)=lnx-e∧x+a

此题模仿今年新课标理数21题压轴题,有兴趣可以去对比下(1)f'(x)=1/x-e^(x+a)f'(1)=1-e^(1+a)=01+a=0a=-1∴f(x)=lnx-e^(x-1)f&

已知函数f(x)={ax2+1,x≥0 (a+2)e^ax,x

a>=o或者-2再问:能给出过程吗再答:1)当a>=o时,f(x)=ax2+1在x≥0单调递增,所以,要求f(x)=(a+2)e^ax在x=o2)同理当a