已知函数f(x)=xlnx求f(x)的极小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:10:49
对f(x)求导,导数为lnx+1,当导数大于0,即x小于1/e单调递增,当导数为0,即x=1/e,有极大值-1/e,当导数小于0,即x小于1/e,单调递减.
x属于(0,正无穷),f'(x)=lnx+1在(0,正无穷)上f'(x)>0,f(x)是增函数x=1时f(x)取到最小值f(1)=1*ln1=0
先求导得F`{X}=lnx+1所以当X=1的时候F{X}=1所以X最小=1
函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得x=1e∴0<x<1e时,f′(x)<0,x>1e时,f′(x)>0∴x=1e时,函数取得极小值,也是函
(1)当a=0时,f(x)=x-xlnx,函数定义域为(0,+∞).f'(x)=-lnx,由-lnx=0,得x=1.-------------(3分)x∈(0,1)时,f'(x)>0,f(x)在(0,
f'(x)=lnx+x(1/x)=lnx+1令f'(x)=0lnx+1=0x=1/ex0,函数单调递增.(1)0
x属于(0,正无穷),f'(x)=lnx+1在(0,正无穷)上f'(x)>0,f(x)是增函数x=1时f(x)取到最小值f(1)=1*ln1=0
(1)对函数f(x)=xlnx求导得:f'(x)=lnx+1令lnx+1=0,x=1/e当x>1/e时,f'(x)>0当01时,g'(x)>0,即g(x)在x≥1时单调递增,最小值为g(1)=1所以a
f(x)定义域为x>0f'(x)=lnx+1当0再问:0∠x
y'=(xlnx)'+(2x)'=(xlnx)'+2=(x)'lnx+(x)(lnx)'+2=lnx+1+2=lnx+3
已知函数f(x)=xlnx1、若函数G(x)=f(x)+x^2+ax+2有零点,求实数a的最大值2、若任取x大于0,f(x)/x小于等于x-kx^2-1恒成立,求实数k的取值范围(1)解析:∵函数f(
f`(x)=lnx+1
f'(x)=lnx+1令f'(x)=0x=1/e(0,1/e)f'(x)
f(x)对x求导得df(x)/dx=lnx+1df(x)/dx>0有x>e分之1,原函数在这个区间单增df(x)/dx
因为f(x)=xlnx所以f'(x)=lnx+1所以当x>1/e时,f'(x)>0;当0
(Ⅰ)由f(x)=xlnx,可得f'(x)=lnx+1,(2分)当x∈(0,1e)时,f'(x)<0,f(x)单调递减;当x∈(1e,+∞)时,f'(x)>0,f(x)单调递增.所以函数f(x)在[1
/>(1)对函数f(x)=xlnx求导得:f'(x)=lnx+1令lnx+1=0,x=1/e当x>1/e时,f'(x)>0当01时,g'(x)>0,即g(x)在x≥1时单调递增,最小值为g(1)=1所
x>0f'(x)=lnx+x*1/x-1=lnx=0x=1当x>1,f'(x)>0,f(x)单调递增当0
先求f(x)的定义域x>0,再求导f'(x)=(xlnx)'=1lnx+x*1/x=lnx+1lnx+1=0,f(x)是增函数.
f`(x)=lnx+1f`(x)=0可推出x=1/ex0所以x=1/e为其极小值点